首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The bioavailability of therapeutic agents from eye drops is usually limited due to corneal barrier functions and effective eye protective mechanisms. Therefore, the current study aims to enhance ocular bioavailability of brimonidine, a potent antiglaucoma drug, through the preparation of ocular inserts. Solvent casting technique was employed to prepare the inserts using polyvinylpyrrolidone K-90 (PVP K-90) as film-forming polymer blended with different viscosity grades of bioadhesive polymers namely hydroxypropyl methycellulose, carbopol, sodium alginate, and chitosan. The prepared ocular inserts were evaluated for various physicochemical parameters, swelling behavior, and in vitro release patterns. Sodium alginate-based ocular inserts revealed the most sustainment in drug release (99% at 6 h), so it was selected for further modifications via coating it, on one side or dual sides, using hydrophobic film composed of either ethylcellulose or Eudragit RSPO. The obtained in vitro release results for the modified ocular inserts revealed that ethylcellulose is superior to Eudragit RSPO in terms of brimonidine release sustainment effect. Ocular inserts composed of 7% PVP K-90, 1.5% low molecular weight sodium alginate with or without ethylcellulose coat were able to sustain the in vitro release of brimonidine. Their therapeutic efficacy regarding intraocular pressure (IOP) lowering effect when inserted in albino rabbits eyes showed superior sustainment effect compared with that of brimonidine solution. Furthermore, due to both the mucoadhesive property and the drug sustainment effect, the one-side-coated ocular insert showed more IOP lowering effect compared with that of its non-coated or dual-side-coated counterpart.  相似文献   

2.
The purpose of the present study was to investigate the effect of nanoemulsions as a carrier vehicle of hydrophilic drug for transdermal delivery. The response surface methodology with a mixture design was used to evaluate the effect of ingredient levels of nanoemulsion formulations including cosurfactant (isopropyl alcohol, 20∼30%), surfactant (mixed of Brij 30 and Brij 35, 20∼30%), and distilled-water (34.5∼50.0%) on properties of the drug-loaded nanoemulsions including physicochemical characters and drug permeability through rat skin. The result showed that the hydrophilic drug in aqueous solution with or without penetration enhancer could not transport across rat skin after 12 h of application. Used nanoemulsions as carrier vehicle, the permeation rate of drug was significantly increased from 0 to 63.23 µg/cm2/h and the lag time was shortened from more than 12 h to about 2.7∼4.0 h. Moreover, the drug-loaded nanoemulsion formulation also showed physicochemical stability after 3 month storage at 25°C and 40°C.  相似文献   

3.

Background

This work aimed to provide useful information on the use of nanoemulsions for the percutaneous administration of triptolide. Lipid nanosystems have great potential for transdermal drug delivery. Nanoemulsions and nanoemulsion gels were prepared to enhance percutaneous permeation. Microstructure and in vitro/in vivo percutaneous delivery characteristics of triptolide (TPL)-nanoemulsions and TPL-nanoemulsion gels were compared. The integrity of the nanoemulsions and nanoemulsion gels during transdermal delivery and its effects on the surface of skin were also investigated. The penetration mechanisms of nanoemulsions and nanoemulsion gels were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The transport characteristics of fluorescence-labelled nanoemulsions were probed using laser scanning confocal microscopy. A chronic dermatitis/eczema model in mice ears and the pharmacodynamic of the TPL-nanoemulsion gels were also investigated.

Results

Compared to TPL gels, significantly greater cumulative amounts of TPL-nanoemulsion gels and TPL-nanoemulsions penetrated rat skin in vitro. The in vivo microdialysis showed the concentration–time curve AUC0–t for TPL-NPs is bigger than the TPL-gels. At the same time, TPL-NPs had a larger effect on the surface of skin. By hydrating keratin and changing the structure of both the stratum corneum lipids and keratin, nanoemulsions and nanoemulsion gels influence skin to promote percutaneous drug penetration. Both hairfollicles and the stratum corneum are also important in this transdermal drug delivery system. Moderate and high dosages of the TPL-nanoemulsion gels can significantly improve the symptoms of dermatitis/eczema inflammation and edema erythematic in mice ears and can reduce the expression of IFN-γ and IL-4. Moreover, the TPL-nanoemulsion gels cause less gastrointestinal damage than that of the Tripterygium wilfordii oral tablet does.

Conclusions

Nanoemulsions could be suitable for transdermal stably releasing drugs and maintaining the effective drug concentration. The TPL-nanoemulsion gels provided higher percutaneous amounts than other carriers did. These findings suggest that nanoemulsion gels could be promising percutaneous carriers for TPL. The TPL-nanoemulsion gels have a significant treatment effect on dermatitis/eczema in the mice model and is expected to provide a new, low-toxicity and long-term preparation for the clinical treatment of dermatitis/eczema in transdermal drug delivery systems.
  相似文献   

4.
Nanoemulsion dosage form serves as a vehicle for the delivery of active pharmaceutical ingredients and has attracted great attention in drug delivery and pharmacotherapy. In particular, nanoemulsions act as an excellent vehicle for poorly aqueous soluble drugs, which are otherwise difficult to formulate in conventional dosage forms. Nanoemulsions are submicron emulsions composed of generally regarded as safe grade excipients. Particle size at the nanoscale and larger surface area lead to some very interesting physical properties that can be exploited to overcome anatomical and physiological barriers associated in drug delivery to the complex diseases such as cancer. Along these lines, nanoemulsions have been engineered with specific attributes such as size, surface charge, prolonged blood circulation, target specific binding ability, and imaging capability. These attributes can be tuned to assist in delivering drug/imaging agents to the specific site of interest, based on active and passive targeting mechanisms. This review focuses on the current state of nanoemulsions in the translational research and its role in targeted cancer therapy. In addition, the production, physico-chemical characterization, and regulatory aspects of nanoemulsion are addressed.  相似文献   

5.
Active targeting of drug molecules can be achieved by effective attachment of suitable ligands to the surface of carriers. The present work was attempted to prepare mannosylated gelatin microspheres (m-GMs) so as to achieve targeted delivery of isoniazid (INH) to alveolar macrophages (AMs) and maintain its therapeutic concentration for prolonged period of time. Microspheres were prepared by emulsification solvent extraction method and evaluated for physicochemical characteristics, drug release, ex vivo drug uptake by AMs and pharmacokinetic characteristics. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectral analysis confirmed that mannosylation took place through Schiff base formation between aldehyde and amino groups of mannose and gelatin, respectively. Prepared microspheres offered suitable physicochemical characteristics for their delivery to AMs. Their average size was about 4 μm and drug entrapment efficiency of 56% was achieved with them. Ex vivo uptake results indicated that in comparison to plain microspheres, m-GMs were selectively uptaken and were found to be associated with phago-lysosomal vesicles of AMs. Pharmacokinetic studies showed the formulation could maintain the therapeutic concentration of INH for prolonged period of time even with a reduced clinical dose. m-GMs were found to be stable in broncheo-alveolar lavage fluid. The study concluded that ligand decorated carriers could be a potential strategy to improve the therapeutic properties of INH.  相似文献   

6.
The aim of the present study was to investigate the potential of a nanoemulsion formulation for transdermal delivery of aceclofenac. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudoternary phase diagrams. The prepared nanoemulsions were subjected to different thermodynamic stability tests. The nanoemulsion formulations that passed thermodynamic stability tests were characterized for viscosity, droplet size, transmission electron microscopy, and refractive index. Transdermal permeation of aceclofenac through rat abdominal skin was determined by Franz diffusion cell. The in vitro skin permeation profile of optimized formulations was compared with that of aceclofenac conventional gel and nanoemulsion gel. A significant increase in permeability parameters such as steady-state flux (J(ss)), permeability coefficient (K(p)), and enhancement ratio (E(r)) was observed in optimized nanoemulsion formulation F1, which consisted of 2% wt/wt of aceclofenac, 10% wt/wt of Labrafil, 5% wt/wt of Triacetin, 35.33% wt/wt of Tween 80, 17.66% wt/wt of Transcutol P, and 32% wt/wt of distilled water. The anti-inflammatory effects of formulation F1 showed a significant increase (P < .05) in percent inhibition value after 24 hours when compared with aceclofenac conventional gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of aceclofenac.  相似文献   

7.
The current investigation aims to develop and evaluate novel ocular proniosomal gels of lomefloxacin HCl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Proniosomes were prepared using different types of nonionic surfactants solely and as mixtures with Span 60. The formed gels were characterized for entrapment efficiency, vesicle size, and in vitro drug release. Only Span 60 was able to form stable LXN-proniosomal gel when used individually while the other surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span 60:Tween 60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80%), appropriate vesicle size (187?nm) as well as controlled drug release over 12?h. Differential scanning calorimetry confirmed the amorphous nature of LXN within the vesicles. Stability study did not show any significant changes in entrapment efficiency or vesicle size after storage for 3 months at 4?°C. P-LXN 7 was found to be safe and suitable for ocular delivery as proven by the irritancy test. The antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops.  相似文献   

8.
Topical medication remains the first line treatment of glaucoma; however, sustained ocular drug delivery via topical administration is difficult to achieve. Most drugs have poor penetration due to the multiple physiological barriers of the eye and are rapidly cleared if applied topically. Currently, daily topical administration for lowering the intra-ocular pressure (IOP), has many limitations, such as poor patient compliance and ocular allergy from repeated drug administration. Poor compliance leads to suboptimal control of IOP and disease progression with eventual blindness. The delivery of drugs in a sustained manner could provide the patient with a more attractive alternative by providing optimal therapeutic dosing, with minimal local toxicity and inconvenience. To investigate this, we incorporated latanoprost into LUVs (large unilamellar vesicles) derived from the liposome of DPPC (di-palmitoyl-phosphatidyl-choline) by the film hydration technique. Relatively high amounts of drug could be incorporated into this vesicle, and the drug resides predominantly in the bilayer. Vesicle stability monitored by size measurement and DSC (differential scanning calorimetry) analysis showed that formulations with a drug/lipid mole ratio of about 10% have good physical stability during storage and release. This formulation demonstrated sustained release of latanoprost in vitro, and then tested for efficacy in 23 rabbits. Subconjunctival injection and topical eye drop administration of the latanoprost/liposomal formulation were compared with conventional daily administration of latanoprost eye drops. The IOP lowering effect with a single subconjunctival injection was shown to be sustained for up to 50 days, and the extent of IOP lowering was comparable to daily eye drop administration. Toxicity and localized inflammation were not observed in any treatment groups. We believe that this is the first demonstration, in vivo, of sustained delivery to the anterior segment of the eye that is safe and efficacious for 50 days.  相似文献   

9.
The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM) were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP) was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a promising system for glaucoma management.  相似文献   

10.
This study was conducted to develop timolol maleate (TM)-loaded galactosylated chitosan (GC) nanoparticles (NPs) (TM-GC-NPs) followed by optimization via a four-level and three-factor Box–Behnken statistical experimental design. The optimized nanoparticles showed a particle size of 213.3?±?6.83 nm with entrapment efficiency of 38.58?±?1.31% and drug loading of 17.72?±?0.28%. The NPs were characterized with respect to zeta potential, pH, surface morphology, and differential scanning calorimetry (DSC). The determination of the oil–water partition coefficient demonstrated that the TM-GC-NPs had a high liposolubility at pH 6 as compared to timolol-loaded chitosan nanoparticles (TM-CS-NPs) and commercial TM eye drops. The in vitro release study indicated that TM-GC-NPs had a sustained release effect compared with the commercial TM eye drops. Ocular tolerance was studied by the hen’s egg chorioallantoic membrane (HET-CAM) assay and the formulation was non-irritant and could be used for ophthalmic drug delivery. The in vitro transcorneal permeation study and confocal microscopy showed enhanced penetration, and retention in the cornea was achieved with TM-GC-NPs compared with the TM-CS-NPs and TM eye drops. Preocular retention study indicated that the retention of TM-GC-NPs was significantly longer than that of TM eye drops. The in vivo pharmacodynamic study suggested TM-GC-NPs had a better intraocular pressure (IOP) lowering efficacy and a prolonged working time compared to commercial TM eye drops (P?≤?0.05). The optimized TM-GC-NPs could be prepared successfully promising their use as an ocular delivery system.  相似文献   

11.
《Phytomedicine》2014,21(3):307-314
Berberine, an isoquinoline alkaloid, has wide biological and pharmacological actions. Despite the promising pharmacological effects and safety of berberine, poor oral absorption due to its extremely low aqueous solubility results in poor oral systemic bioavailability. This limits its clinical usage. This study describes the development and characterization of self-nanoemulsifying drug delivery system (SNEDDS) of berberine in liquid as well as solid form with improved solubility, dissolution and in vivo therapeutic efficacy. The SNEDDS of berberine were prepared using Acrysol K-150, Capmul MCM and polyethylene glycol 400. The formulations were characterized for various in vitro physicochemical characteristics. In vivo efficacy was evaluated in acetic acid induced inflammatory bowel model in rats. Anti-angiogenic activity of the developed SNEDDS of berberine was studied using chick chorioallantoic membrane assay. SNEDDS of berberine rapidly formed nanoemulsions with globule size of 17–45 nm. The in vitro rate and extent of release of berberine from SNEDDS was significantly higher than berberine alone. Chick chorioallantoic membrane assay revealed potent anti-angiogenic activity of SNEDDS of berberine. These studies demonstrate that the SNEDDS of berberine is a promising strategy for improving its therapeutic efficacy and have potential application in the treatment of chronic inflammatory conditions and cancer.  相似文献   

12.
The release of verapamil hydrochloride from tablets with Eudragit RLPO or Kollidon®SR with different drug-to-polymer ratios were investigated with a view to develop twice-daily sustained-release dosage form by solid dispersion (SD) technique. The SDs containing Eudragit RLPO or Kollidon®SR at drug-polymer ratios of 1:1, 1:2, and 1:3 with verapamil hydrochloride were developed using solvent evaporation technique. The physical mixtures of drug and both polymers were prepared by using simple mixing technique at the same ratio as solid dispersion. The physicochemical properties of solid dispersion were evaluated by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The study of DSC, XRD, and FTIR could not show significant interaction between verapamil HCl and Kollidon®SR or Eudragit RLPO. The solid dispersions or physical mixtures were compressed to tablets. The tablets were prepared with solid dispersions containing Eudragit RLPO or Kollidon®SR, with all the official requirements of tablet dosage forms fulfilled. Tablets prepared were evaluated for the release of verapamil hydrochloride over a period of 12 h in pH 6.8 phosphate buffer using US Pharmacopoeia type II dissolution apparatus. The in vitro drug release study revealed that the tablet containing Eudragit has extended the release rate for 12 h whereas the tablet containing Kollidon®SR at the same concentration has extended the release rate up to 8 h. The in vitro release profile and the mathematical models indicate that release of verapamil hydrochloride can be effectively controlled from a tablet containing solid dispersions of Eudragit RLPO. The reduction of size fraction of the SD system from 200–250 to 75–125 μm had a great effect on the drug release.  相似文献   

13.
Although conventional pharmaceuticals have many drug dosage forms on the market, the development of new therapeutic molecules and the low efficacy of instant release formulations for the treatment of some chronic diseases and specific conditions encourage scientists to invent different delivery systems. To this purpose, a supramolecular hydrogel consisting of the tri-block copolymer PLGA-PEG-PLGA and α-cyclodextrin was fabricated for the first time and characterised in terms of rheological, morphological, and structural properties. Naltrexone hydrochloride and vitamin B12 were loaded, and their release profiles were determined.  相似文献   

14.
Antibiotics have a short residence time and have low concentrations when absorbed through the basolateral membrane in the stomach; this causes a failure to enhance drug concentrations at Helicobacter pylori infection sites. This study developed a nanocarrier system with the ability to carry amoxicillin to increase its efficacy against H. pylori. We used a water-in-oil emulsification system to prepare a positively charged nanoemulsion particle composed of amoxicillin, chitosan, and heparin. The particle size of the prepared nanoemulsion particle was controlled by the constituted compositions. The morphology of the nanoemulsion particles was spherical. In vitro analysis of amoxicillin released indicated that the nanocarrier system controlled amoxicillin release in the gastrointestinal dissolution medium and amoxicillin-loaded nanoemulsion particles localized to the site of H. pylori infection. Meanwhile, results of in vivo clearance assays indicated that the prepared amoxicillin-loaded nanoemulsion particles had a significantly greater H. pylori clearance effect in the gastric infection mouse model than the amoxicillin solution alone.  相似文献   

15.
Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion–spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.  相似文献   

16.
The effect of concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic polymers (hydrogenated castor oil [HCO], ethylcellulose) on the release rate of tramadol was studied. Hydrophilic matrix tablets were prepared by wet granulation technique, while hydrophobic (wax) matrix tablets were prepared by melt granulation technique and in vitro dissolution studies were performed using United States Pharmacopeia (USP) apparatus type II. Hydrophobic matrix tablets resulted in sustained in vitro drug release (>20 hours) as compared with hydrophilic matrix tablets (<14 hours). The presence of ethylcellulose in either of the matrix systems prolonged the release rate of the drug. Tablets prepared by combination of hydrophilic and hydrophobic polymers failed to prolong the drug release beyond 12 hours. The effect of ethylcellulose coating (Surelease) and the presence of lactose and HPMC in the coating composition on the drug release was also investigated. Hydrophobic matrix tablets prepared using HCO were found to be best suited for modulating the delivery of the highly water-soluble drug, tramadol hydrochloride.  相似文献   

17.

Biodegradable polymers, when reinforced with nanostructures, are considered good sustainable coatings and viable alternatives to replace conventional coatings. In addition, biopesticides are also considered safe, biodegradable and environmentally friendly; therefore there is a growing interest in nanoemulsions based on phytochemical mixtures. In this context, the aim of this study is to aggregate Neem oil nanoemulsions and pectin matrices to produce nanocomposite films, as well as evaluate the nanoemulsions effect on the film properties for coating soybean seeds. Nanoemulsions were characterized assessing their average diameter and stability, while the nanocomposite antifungal, morphology, mechanical and barrier properties were analyzed. In general, the nanoemulsions had an average diameter close to 59 ± 0.61 nm, showed good stability and its addition improved film mechanical properties: reduced stiffness, resistance, and water vapor permeability, and increased extensibility. In addition, Neem oil provided antifungal properties against Aspergillus Flavus and Penicillium Citrinum. The seed coatings promoted a positive effect on the germination process of soybean seeds. Thus, antifungal nanocomposite films from renewable sources were successfully produced. The fungicidal inhibition of Neem oil as a nanoemulsion makes these new materials promising for the production of seed coatings.

  相似文献   

18.
Oral administration of antibiotics to treat dental problems mostly yields slow actions due to slow onset and hepatic “first-pass.” Again, commonly used dental paints are generally washed out by saliva within few hours of application. To overcome the challenges, polymeric molds to be placed on an affected tooth (during carries and gum problems) were prepared and evaluated in vitro for sustained drug release for prolonged local action. Here, amoxicillin trihydrate and lidocaine hydrochloride were used as model drugs. Dental molds were prepared using corn zein, carbopol 934 P, gum karaya powder, and poloxamer 407 by mixing and solvent evaporation technique. Different physicochemical evaluation studies such as tooth adhesion test, surface pH, swelling index, and drug-distribution pattern were carried out. Percentage swelling varied from 56% to 93%. Average tooth adhesion strength and mean initial surface pH of the formulations were 50 g and 6.5, respectively. As assessed by scanning electron microscopy, drug distribution was uniform throughout the matrix. Cumulative percentage release of lidocaine hydrochloride and amoxicillin trihydrate in simulated saliva were 98% and 50%, respectively. In vitro drug-release studies revealed the sustained-release patterns of the drugs in simulated saliva at least for 24 h. The stability study shows that the drugs were stable in the formulations following the conditions as per ICH guideline. The formulation is a novel approach to deliver the drug(s) for a prolonged period for local action upon its application on an affected tooth.  相似文献   

19.
Brinzolamide (BLZ) is a drug used to treat glaucoma; however, its use is restricted due to some unwanted adverse events. The goal of this study was to develop BLZ-loaded liquid crystalline nanoparticles (BLZ LCNPs) and to figure out the possibility of LCNPs as a new therapeutic system for glaucoma. BLZ LCNPs were produced by a modified emulsification method and their physicochemical aspects were estimated. In vitro release study revealed BLZ LCNPs displayed to some extent prolonged drug release behavior in contrast to that of BLZ commercial product (Azopt®). The ex vivo apparent permeability coefficient of BLZ LCNP systems demonstrated a 3.47-fold increase compared with that of Azopt®. The pharmacodynamics was checked over by calculating the percentage fall in intraocular pressure and the pharmacodynamic test showed that BLZ LCNPs had better therapeutic potential than Azopt®. Furthermore, the in vivo ophthalmic irritation was evaluated by Draize test. In conclusion, BLZ LCNPs would be a promising delivery system used for the treatment of glaucoma, with advantages such as lower doses but maintaining the effectiveness, better ocular bioavailability, and patient compliance compared with Azopt®.  相似文献   

20.
Abstract

In this study, an optimal nanoemulsion formulation for Curcuma xanthorrhiza oil (Xan) was investigated using different sonication times. The antimicrobial effects of the nanoemulsion, the original emulsion, distilled water (DW), and Listerine, on Streptococcus mutans biofilms were compared. The optimum ultrasonic time, determined in terms of droplet size and stability, was found to be 10?min. Cell viability was the lowest on exposure to the nanoemulsion, and significantly different compared with exposure to DW or Listerine. The emulsion’s effect was similar to that of the nanoemulsion, but was non-uniform with a high interquartile range. Confocal microscope analysis revealed that the live/dead cell ratio in the nanoemulsion was 50% and 40% less than those in DW and Listerine, respectively. Biofilm treated with the nanoemulsion was thinner than biofilms exposed to the other treatments. Xan nanoemulsions exhibited stable and strong antimicrobial effects due to nano-sized particles, highlighting their potential use in oral health treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号