首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fanconi anaemia (FA) is a genetic disease featuring bone marrow failure, proneness to malignancies, and chromosomal instability. A line of studies has related FA to oxidative stress (OS). This review attempts to evaluate the evidence for FA-associated redox abnormalities in the literature from 1981 to 2010. Among 2170 journal articles on FA evaluated, 162 related FA with OS. Early studies reported excess oxygen toxicity in FA cells that accumulated oxidative DNA damage. Prooxidant states were found in white blood cells and body fluids from FA patients as excess luminol-dependent chemiluminescence, 8-hydroxy-deoxyguanosine, reduced glutathione/oxidized glutathione imbalance, and tumour necrosis factor-α. Some FA gene products involved in redox homeostasis can be summarized as follows: (a) FANCA, FANCC, and FANCG interact with cytochrome P450-related activities and/or respond to oxidative damage; (b) FANCD2 in OS response interacts with forkhead box O3 and ataxia telangiectasia mutated protein; (c) FANCG is found in mitochondria and interacts with PRDX3, and FA-G cells display distorted mitochondria and decreased peroxidase activity; (d) FANCJ (BACH1/BRIP1) is a repressor of haeme oxygenase-1 gene and senses oxidative base damage; (e) antioxidants, such as tempol and resveratrol decrease cancer incidence and haematopoietic defects in Fancd2(-/-) mice. The overall evidence for FA-associated OS may suggest designing chemoprevention studies aimed at delaying the onset of OS-related clinical complications.  相似文献   

2.
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway   总被引:17,自引:0,他引:17  
Fanconi anemia (FA) is a human autosomal recessive cancer susceptibility disorder characterized by cellular sensitivity to mitomycin C and ionizing radiation. Although six FA genes (for subtypes A, C, D2, E, F, and G) have been cloned, their relationship to DNA repair remains unknown. In the current study, we show that a nuclear complex containing the FANCA, FANCC, FANCF, and FANCG proteins is required for the activation of the FANCD2 protein to a monoubiquitinated isoform. In normal (non-FA) cells, FANCD2 is monoubiquitinated in response to DNA damage and is targeted to nuclear foci (dots). Activated FANCD2 protein colocalizes with the breast cancer susceptibility protein, BRCA1, in ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. The FANCD2 protein, therefore, provides the missing link between the FA protein complex and the cellular BRCA1 repair machinery. Disruption of this pathway results in the cellular and clinical phenotype common to all FA subtypes.  相似文献   

3.
Fanconi anemia (FA), a genetic disorder predisposing to aplastic anemia and cancer, is characterized by hypersensitivity to DNA-damaging agents and oxidative stress. Five of the cloned FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG) appear to be involved in a common functional pathway that is required for the monoubiquitination of a sixth gene product, FANCD2. Here, we report that FANCA associates with the IkappaB kinase (IKK) signalsome via interaction with IKK2. Components of the FANCA complex undergo rapid, stimulus-dependent changes in phosphorylation, which are blocked by kinase-inactive IKK2 (IKK2 K > M). When exposed to mitomycin C, cells expressing IKK2 K > M develop a cell cycle abnormality characteristic of FA. Thus, FANCA may function to recruit IKK2, thus providing the cell a means of rapidly responding to stress.  相似文献   

4.
Fanconi anemia (FA) is a genetically heterogeneous disorder characterized by bone marrow failure, birth defects, and chromosomal instability. Because FA cells are sensitive to mitomycin C (MMC), FA gene products could be involved in cellular defense mechanisms. The FANCA and FANCG proteins deficient in FA groups A and G interact directly with each other. We have localized the mutual interaction domains of these proteins to amino acids 18-29 of FANCA and to two noncontiguous carboxyl-terminal domains of FANCG encompassing amino acids 400-475 and 585-622. Site-directed mutagenesis of FANCA residues 18-29 revealed a novel arginine-rich interaction domain (RRRAWAELLAG). By alanine mutagenesis, Arg(1), Arg(2), and Leu(8) but not Arg(3), Trp(5), and Glu(7) appeared to be critical for binding to FANCG. Similar immunolocalization for FANCA and FANCG suggested that these proteins interact in vivo. Moreover, targeting of FANCA to the nucleus or the cytoplasm with nuclear localization and nuclear export signals, respectively, showed concordance between the localization patterns of FANCA and FANCG. The complementation function of FANCA was abolished by mutations in its FANCG-binding domain. Conversely, stable expression of FANCA mutants encoding intact FANCG interaction domains induced hypersensitivity to MMC in HeLa cells. These results demonstrate that FANCA-FANCG complexes are required for cellular resistance to MMC. Because the FANCC protein deficient in FA group C works within the cytoplasm, we suggest that FANCC and the FANCA-FANCG complexes suppress MMC cytotoxicity within distinct cellular compartments.  相似文献   

5.
Fanconi anemia is a chromosomal breakage disorder with eight complementation groups (A-H), and three genes (FANCA, FANCC, and FANCG) have been identified. Initial investigations of the interaction between FANCA and FANCC, principally by co-immunoprecipitation, have proved controversial. We used the yeast two-hybrid assay to test for interactions of the FANCA, FANCC, and FANCG proteins. No activation of the reporter gene was observed in yeast co-expressing FANCA and FANCC as hybrid proteins, suggesting that FANCA does not directly interact with FANCC. However, a high level of activation was found when FANCA was co-expressed with FANCG, indicating strong, direct interaction between these proteins. Both FANCA and FANCG show weak but consistent interaction with themselves, suggesting that their function may involve dimerisation. The site of interaction of FANCG with FANCA was investigated by analysis of 12 mutant fragments of FANCG. Although both N- and C-terminal fragments did interact, binding to FANCA was drastically reduced, suggesting that more than one region of the FANCG protein is required for proper interaction with FANCA.  相似文献   

6.
Nimustine (ACNU) and temozolomide (TMZ) are DNA alkylating agents which are commonly used in chemotherapy for glioblastomas. ACNU is a DNA cross-linking agent and TMZ is a methylating agent. The therapeutic efficacy of these agents is limited by the development of resistance. In this work, the role of the Fanconi anemia (FA) repair pathway for DNA damage induced by ACNU or TMZ was examined. Cultured mouse embryonic fibroblasts were used: FANCA(-/-), FANCC(-/-), FANCA(-/-)C(-/-), FANCD2(-/-) cells and their parental cells, and Chinese hamster ovary and lung fibroblast cells were used: FANCD1/BRCA2mt, FANCG(-/-) and their parental cells. Cell survival was examined after a 3 h ACNU or TMZ treatment by using colony formation assays. All FA repair pathways were involved in ACNU-induced DNA damage. However, FANCG and FANCD1/BRCA2 played notably important roles in the repair of TMZ-induced DNA damage. The most effective molecular target correlating with cellular sensitivity to both ACNU and TMZ was FANCD1/BRCA2. In addition, it was found that FANCD1/BRCA2 small interference RNA efficiently enhanced cellular sensitivity toward ACNU and TMZ in human glioblastoma A172 cells. These findings suggest that the down-regulation of FANCD1/BRCA2 might be an effective strategy to increase cellular chemo-sensitization towards ACNU and TMZ.  相似文献   

7.
Fanconi anemia (FA) proteins function in a DNA damage response pathway that appears to be part of the network including breast cancer susceptibility gene products, BRCA1 and BRCA2. In response to DNA damage or replication signals, a nuclear FA core complex of at least 6 FA proteins (FANCA, FANCC, FANCE, FANCF, FANCG, and FANCL) is activated and leads to monoubiquitination of the downstream FA protein, FANCD2. One puzzling question for this pathway is the role of BRCA2. A previous study has proposed that BRCA2 could be identical to two FA proteins: FANCD1, which functions either downstream or in a parallel pathway; and FANCB, which functions upstream of the FANCD2 monoubiquitination. Now, a new study shows that the real FANCB protein is not BRCA2, but a previously uncharacterized component of the FA core complex, FAAP95, suggesting that BRCA2 does not act upstream of the FA pathway. Interestingly, the newly discovered FANCB gene is X-linked and subject to X-inactivation. The presence of a single active copy of FANCB and its essentiality for a functional FA-BRCA pathway make it a potentially vulnerable component of the cellular machinery that maintains genomic integrity.  相似文献   

8.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A to H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but their cellular function remains unknown. We have previously demonstrated that the FANCA and FANCC proteins interact and form a nuclear complex in normal cells, suggesting that the proteins cooperate in a nuclear function. In this report, we demonstrate that the recently cloned FANCG/XRCC9 protein is required for binding of the FANCA and FANCC proteins. Moreover, the FANCG protein is a component of a nuclear protein complex containing FANCA and FANCC. The amino-terminal region of the FANCA protein is required for FANCG binding, FANCC binding, nuclear localization, and functional activity of the complex. Our results demonstrate that the three cloned FA proteins cooperate in a large multisubunit complex. Disruption of this complex results in the specific cellular and clinical phenotype common to most FA complementation groups.  相似文献   

9.
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.  相似文献   

10.
11.
Repair of DNA interstrand cross-links is a complex process critical to which is the identification of sites of damage by specific proteins. We have recently identified the structural protein nonerythroid alpha spectrin (alphaSpIISigma) as a component of a nuclear protein complex in normal human cells which is involved in the repair of DNA interstrand cross-links and have shown that it forms a complex with the Fanconi anemia proteins FANCA, FANCC, and FANCG. Using DNA affinity chromatography, we now show that alphaSpIISigma, present in HeLa cell nuclei, specifically binds to DNA containing psoralen interstrand cross-links and that the FANCA, FANCC, and FANCG proteins are bound to this damaged DNA as well. That spectrin binds directly to the cross-linked DNA has been shown using purified bovine brain spectrin (alphaSpIISigma1/betaSpIISigma1)2. Binding of the Fanconi anemia (FA) proteins to the damaged DNA may be either direct or indirect via their association with alphaSpIISigma. These results demonstrate a role for alpha spectrin in the nucleus as well as a new function for this protein in the cell, an involvement in DNA repair. alphaSpIISigma may bind to cross-linked DNA and act as a scaffold to help in the recruitment of repair proteins to the site of damage and aid in their alignment and interaction with each other, thus enhancing the efficiency of the repair process.  相似文献   

12.
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.  相似文献   

13.
The principal cellular feature of Fanconi anemia (FA), an inherited cancer prone disorder, is a high level of chromosomal breakage, amplified after treatment with crosslinking agents. Three of the eight genes involved in FA have been cloned: FANCA, FANCC and FANCG. However, their biological functions remain unknown. We previously observed an excessive production of deletions at the HPRT locus in FA lymphoblasts belonging to the relatively rare complementation group D(1) and an increased frequency of glycophorin A (GPA) variants in erythrocytes derived from FA patients (2). In thi study, we examined the molecular nature of 31 HPRT mutations formed in vivo in circulating T-lymphocytes isolated from 9 FA male patients. The results show that in all FA patients investigated the deletions are by far the most prevalent mutational event in contrast to age matched healthy donors, in which point mutations predominate. The complementation group in the FA patients examined in the present study has not yet been defined. However, knowing that mutations in the FANCA and FANCC gene are found to be involved in at least 70% of the FA patients, it can be expected that the excessive production of deletions is a general feature of the FA phenotype. In addition, the spectrum of HPRT deletions observed in FA patients differs from that of healthy children: there is a high frequency of 3'-terminal deletions and a strikingly low proportion of V(D)J mediated events. Based on previous findings, a decreased fidelity of coding V(D)J joint formation (3) and an inaccurate repair of specific DNA double strand breaks via Non-Homologous End Joining (4), we propose that FA genes play a role in the control of the fidelity of rejoining of specific DNA ends. Such a defect may explain several basic features of FA, such as chromosomal instability and deletion pronenness.  相似文献   

14.
Fanconi anemia (FA) is an autosomal recessive disease of cancer susceptibility. FA cells exhibit a characteristic hypersensitivity to DNA cross-linking agents. The molecular mechanism for the disease is unknown as few of the FA proteins have functional motifs. Several post-translational modifications of the proteins have been described. We and others have reported that the FANCG protein (Fanconi complementation group G) is phosphorylated. We show that in an in vitro kinase reaction FANCG is radioactively labeled. Mass spectrometry analysis detected a peptide containing phosphorylation of serine 7. Using PCR-mediated site-directed mutagenesis we mutated serine 7 to alanine. Only wild-type FANCG cDNA fully corrected FA-G mutant cells. We also tested the effect of human wild-type FANCG in Chinese hamster ovary cells in which the FANCG homologue is mutant. Human FANCG complemented these cells, whereas human FANCG(S7A) did not. Unexpectedly, FANCG(S7A) bound to and stabilized the endogenous forms of the FANCA and FANCC proteins in the FA-G cells. FANCG(S7A) aberrantly localized to globules in chromatin and did not abrogate the internuclear bridges seen in the FA-G mutant cells. Phosphorylation of serine 7 in FANCG is functionally important in the FA pathway.  相似文献   

15.
Fanconi anemia (FA) is a genetic syndrome characterized by bone marrow failure, birth defects, and a predisposition to malignancy. At this time, six FA genes have been identified, and several gene products have been found to interact in a protein complex. FA cells appear to overexpress the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha). We therefore examined the effects of TNF-alpha on the regulation of FA complementation group proteins, FANCG and FANCA. We found that treatment with TNF-alpha induced FANCG protein expression. FANCA was induced concurrently with FANCG, and the FANCA/FANCG complex was increased in the nucleus following TNF-alpha treatment. Inactivation of inhibitory kappa B kinase-2 modulated the expression of FANCG. We also found that both nuclear and cytoplasmic FANCG fractions were phosphorylated. These results show that FANCG is a phosphoprotein and suggest that the cellular accumulation of FA proteins is subject to regulation by TNF-alpha signaling.  相似文献   

16.
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. The FA proteins have functions in genome maintenance and in the cytoplasmic process of selective autophagy, beyond their canonical roles of repairing DNA interstrand cross-links. FA core complex proteins FANCC, FANCF, FANCL, FANCA, FANCD2, BRCA1 and BRCA2, which previously had no known direct functions outside the nucleus, have recently been implicated in mitophagy. Although mutations in FANCL account for only a very small number of cases in FA families, it plays a key role in the FA pathophysiology and might drive carcinogenesis. Here, we demonstrate that FANCL protein is present in mitochondria in the control and Oligomycin and Antimycin (OA)-treated cells and its ubiquitin ligase activity is not required for its localization to mitochondria. CRISPR/Cas9-mediated knockout of FANCL in HeLa cells overexpressing parkin results in increased sensitivity to mitochondrial stress and defective clearing of damaged mitochondria upon OA treatment. This defect was reversed by the reintroduction of either wild-type FANCL or FANCL(C307A), a mutant lacking ubiquitin ligase activity. To summarize, FANCL protects from mitochondrial stress and supports Parkin-mediated mitophagy in a ubiquitin ligase-independent manner.  相似文献   

17.
Fanconi anaemia (FA) comprises a group of autosomal recessive disorders resulting from mutations in one of eight genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF and FANCG). Although caused by relatively simple mutations, the disease shows a complex phenotype, with a variety of features including developmental abnormalities and ultimately severe anaemia and/or leukemia leading to death in the mid teens. Since 1992 all but two of the genes have been identified, and molecular analysis of their products has revealed a complex mode of action. Many of the proteins form a nuclear multisubunit complex that appears to be involved in the repair of double-strand DNA breaks. Additionally, at least one of the proteins, FANCC, influences apoptotic pathways in response to oxidative damage. Further analysis of the FANC proteins will provide vital information on normal cell responses to damage and allow therapeutic strategies to be developed that will hopefully supplant bone marrow transplantation.  相似文献   

18.
Fibroblasts from patients with Fanconi anemia (FA) display genomic instability, hypersensitivity to DNA cross-linking agents, and deficient DNA end joining. Fibroblasts from two FA patients of unidentified complementation group also had significantly increased cellular homologous recombination (HR) activity. Results described herein show that HR activity levels in patient-derived FA fibroblasts of groups A, C, and G were 10-fold greater than those seen in normal fibroblasts. In contrast, HR activity in group D2 fibroblasts was identical to that in normal cells. Western blot analysis revealed that the RAD51 protein was elevated 10-fold above normal levels in group A, C, and G fibroblasts, but was not altered in group D2 fibroblasts. HR activity levels in these former cells could be restored to near-normal levels by electroporation with anti-RAD51 antibody, whereas similar treatment of normal and complementation group D2 fibroblasts had no effect. These findings are consistent with a model in which FA proteins function to coordinate DNA double-strand break repair activity by regulating both recombinational and non-recombinational DNA repair. Interestingly, whereas positive regulation of DNA end joining requires the combined presence of all FA proteins thus far tested, suppression of HR, which is minimally dependent on the FANCA, FANCC, and FANCG proteins, does not require FANCD2.  相似文献   

19.
Fanconi anemia (FA) is an autosomal recessive chromosomal instability syndrome with at least seven different complementation groups. Four FA genes (FANCA, FANCC, FANCF, and FANCG) have been identified, and two other FA genes (FANCD and FANCE) have been mapped. Here we report the identification, by complementation cloning, of the gene mutated in FA complementation group E (FANCE). FANCE has 10 exons and encodes a novel 536-amino acid protein with two potential nuclear localization signals.  相似文献   

20.
Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号