首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) have critical roles during adipogenesis; however, their precise functions are not completely understood. Porcine miRNA expression profiles show that miR-127 is dramatically downregulated with age in adipose tissue. We aimed to identify the precise functions and mechanisms of miR-127 in proliferation and adipogenesis. Preadipocytes were cultured under conditions to induce proliferation or differentiation and the effect of miR-127 overexpression on these processes, and the associated bioinformatically predicted target genes, were assessed using luciferase assays, quantitative real-time PCR, western blot analysis, and cell staining techniques. miR-127 increased proliferation by promoting cell cycling, whereas it suppressed differentiation, which was accompanied by reduced lipid accumulation. miR-127 targeted mitogen-activated protein kinase 4 and homeobox C6 (HOXC6) to activate preadipocyte proliferation. During differentiation, miR-127 targeted HOXC6 to attenuate adipogenesis. These findings identify miR-127 as an inhibitor of porcine adipogenesis, which may inform future strategies to reduce porcine fat deposition and treat human obesity.  相似文献   

2.
Recent findings indicate that microRNAs (miRNAs) are involved in the regulatory network of adipogenesis and obesity. Thus far, only a few human miRNAs are known to function as adipogenic regulators, fanning interest in studies on the functional role of miRNAs during adipogenesis in humans. In a previous study, we used a microarray to assess miRNA expression during human preadipocyte differentiation. We found that expression of the miR-26b was increased in mature adipocytes. MiR-26b is an intronic miRNA located in the intron of CTDSP1 (carboxy terminal domain, RNA polymerase II, polypeptide A, small phosphatase 1). Target prediction and Renilla luciferase analyses revealed the phosphatase and tensin homolog gene (PTEN) as a putative target gene. In this study, we found that miR-26b was gradually upregulated during adipocyte differentiation. To understand the roles of miR-26b in adipogenesis, we adopted a loss-of-function approach to silence miR-26b stably in human preadipocytes. We found that miR-26b inhibition effectively suppressed adipocyte differentiation, as evidenced by decreased lipid droplets and the ability of miR-26b to decrease mRNA levels of adipocyte-specific molecular markers and triglyceride accumulation. Furthermore, the cell growth assay revealed that miR-26b inhibition promoted proliferation. Nevertheless, it had no effect on apoptosis. Taken together, these data indicate that miR-26b may be involved in adipogenesis and could be targeted for therapeutic intervention in obesity.  相似文献   

3.
MicroRNA-143 regulates adipocyte differentiation   总被引:46,自引:0,他引:46  
MicroRNAs (miRNAs) are endogenously expressed 20-24 nucleotide RNAs thought to repress protein translation through binding to a target mRNA (1-3). Only a few of the more than 250 predicted human miRNAs have been assigned any biological function. In an effort to uncover miRNAs important during adipocyte differentiation, antisense oligonucleotides (ASOs) targeting 86 human miRNAs were transfected into cultured human pre-adipocytes, and their ability to modulate adipocyte differentiation was evaluated. Expression of 254 miRNAs in differentiating adipocytes was also examined on a miRNA microarray. Here we report that the combination of expression data and functional assay results identified a role for miR-143 in adipocyte differentiation. miR-143 levels increased in differentiating adipocytes, and inhibition of miR-143 effectively inhibited adipocyte differentiation. In addition, protein levels of the proposed miR-143 target ERK5 (4) were higher in ASO-treated adipocytes. These results demonstrate that miR-143 is involved in adipocyte differentiation and may act through target gene ERK5.  相似文献   

4.

Background

As an important factor affecting meat quality, intramuscular fat (IMF) content is a topic of worldwide concern. Emerging evidences indicate that microRNAs play important roles in adipocyte differentiation. However, miRNAome has neither been studied during porcine intramuscular preadipocyte differentiation, nor compared with subcutaneous preadipocytes. The objectives of this study were to identify porcine miRNAs involved in adipogenesis in primary preadipocytes, and to determine whether intramuscular and subcutaneous adipocytes differ in the expression and regulation of miRNAs.

Results

miRNAomes in primary intramuscular and subcutaneous adipocytes during differentiation were first sequenced using the Solexa deep sequencing method. The sequences and relative expression levels of 224 known (98.2% in miRbase 18.0) and 280 potential porcine miRNAs were identified. Fifty-four of them changed in similar pattern between intramuscular vascular stem cells (IVSC) and subcutaneous vascular stem cells (SVSC) differentiation, such as miR-210, miR-10b and miR-99a. Expression levels of 10 miRNAs were reversely up-or down-regulated between IVSC and SVSC differentiation, 19 were up-or down-regulated only during IVSC differentiation and 55 only during SVSC differentiation. Additionally, 30 miRNAs showed fat-depot specific expression pattern (24 in cells of intramuscular origin and 6 in cells of subcutaneous origin). These adipogenesis-related miRNAs mainly functioned by targeting similar pathways in adipogenesis, obesity and syndrome.

Conclusion

Comparison of miRNAomes in IVSC and SVSC during differentiation revealed that many different miRNAs are involved in adipogenesis, and they regulate SVSC and IVSC differentiation through similar pathways. These miRNAs may serve as biomarkers or targets for enhancing IMF content, and uncovering their function in IMF development will be of great value in the near future.  相似文献   

5.
MicroRNAs (miRNAs) take part in a variety of biological processes by regulating target genes. Transforming growth factor β receptor 1 (TGFBR1) and TGFBR2 are crucial members of the TGF-β family and are serine/threonine kinase receptors. The aim of this study was to explore the functions of ssc-miR-204 in porcine preadipocyte differentiation and apoptosis with regard to the TGFβ/Smad pathway. We identified miRNAs predicted to target TGFBR1 and TGFBR2 using a database and selected ssc-miR-204 as a candidate miRNA. ssc-miR-204 overexpression dramatically reduced the levels of TGFBR1 and TGFBR2. However, after transfection with ssc-miR-204 inhibitor, TGFBR1 and TGFBR2 levels were dramatically increased. ssc-miR-204 overexpression dramatically promoted porcine preadipocyte differentiation and apoptosis. After transfection with ssc-miR-204 inhibitor, porcine preadipocyte differentiation and apoptosis were dramatically inhibited. After transfection with ssc-miR-204 mimics, Smad2, Smad3, Smad4, p-Smad2, and p-Smad3 protein levels significantly decreased, and adipogenesis was regulated by inhibiting the TGF-β/Smad3 signaling pathway. Taken together, these results verified that ssc-miR-204 regulates porcine preadipocyte differentiation and apoptosis by targeting TGFBR1 and TGFBR2.  相似文献   

6.
7.
Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism.  相似文献   

8.
Skeletal muscle is an important and complex organ with multiple biological functions in humans and animals. Proliferation and differentiation of myoblasts are the key steps during the development of skeletal muscle. MicroRNA (miRNA) is a class of 21-nucleotide noncoding RNAs regulating gene expression by combining with the 3′-untranslated region of target messenger RNA. Many studies in recent years have suggested that miRNAs play a critical role in myogenesis. Through high-throughput sequencing, we found that miR-323-3p showed significant changes in the longissimus dorsi muscle of Rongchang pigs in different age groups. In this study, we discovered that overexpression of miR-323-3p repressed myoblast proliferation and promoted differentiation, whereas the inhibitor of miR-323-3p displayed the opposite results. Furthermore, we predicted Smad2 as the target gene of miR-323-3p and found that miR-323-3p directly modulated the expression level of Smad2. Then luciferase reporter assays verified that Smad2 was a target gene of miR-323-3p during the differentiation of myoblasts. These findings reveal that miR-323-3p is a positive regulator of myogenesis by targeting Smad2. This provides a novel mechanism of miRNAs in myogenesis.  相似文献   

9.
Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3′ untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.  相似文献   

10.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

11.
12.
研究新近发现的猪Ghrelin (porcine ghrelin,pGhrelin)对猪前体脂肪细胞Caspase-3活性及其基因表达的影响.采用细胞培养技术,以仔猪背部皮下前体脂肪细胞为靶细胞,经0、1、10和100 nmol/L pGhrelin处理细胞48 h后,于倒置生物显微镜下进行脂肪细胞形态学观察.利用MTT法测定pGhrelin对细胞增殖的影响.采用分光光度法检测Caspase-3活性.以实时荧光定量RT-PCR方法测定Caspase-3的基因表达.结果显示,10 nmol/L pGhrelin可以显著降低脂肪细胞Caspase-3的活性与mRNA的表达水平(P < 0.05),100 nmol/L pGhrelin对猪脂肪前体细胞增殖有极显著促进作用(P < 0.01).上述结果表明,pGhrelin可以下调Caspase-3的活性与基因表达,促进脂肪细胞增殖,抑制脂肪细胞凋亡,其机制可能与Caspase-3依赖性凋亡调节信号通路有关.  相似文献   

13.
14.
Phosphotyrosine interaction domain containing 1 (PID1), a recently identified gene involved in obesity-associated insulin resistance, plays an important role in fat deposition. However, its effect on porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, the plasmid pcDNA3.1(+)-pPID1 was transfected into porcine intramuscular preadipocytes with Lipofectamine 3000 reagent to over-express porcine PID1 (pPID1). Over-expression of pPID1 significantly promoted porcine intramuscular preadipocyte proliferation. Expression of pPID1 mRNA was significantly increased upon porcine intramuscular preadipocyte differentiation. Indirect fluorescent immunocytochemistry demonstrated that pPID1 protein was localized predominantly in the nucleus of porcine intramuscular preadipocyte. The mRNA levels of peroxisome proliferators-activated receptor γ, CCAAT/enhancer binding protein α and lipoprotein lipase were significantly increased by pPID1 over-expression. Over-expression of pPID1 also led to an increase in lipid accumulation which was detected by Oil Red O staining, and significantly increased the intramuscular triacylglycerol content. These results indicate that pPID1 may play a role in enhancing porcine intramuscular preadipocyte proliferation and differentiation.  相似文献   

15.
16.
In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2.  相似文献   

17.
18.
Although microRNAs (miRNAs) are involved in many biological processes, the mechanisms whereby miRNAs regulate osteoblastic differentiation are poorly understood. Here, we found that BMP-4-induced osteoblastic differentiation of bone marrow-derived ST2 stromal cells was promoted and repressed after transfection of sense and antisense miR-210, respectively. A reporter assay demonstrated that the activin A receptor type 1B (AcvR1b) gene was a target for miR-210. Furthermore, inhibition of transforming growth factor-β (TGF-β)/activin signaling in ST2 cells with SB431542 promoted osteoblastic differentiation. We conclude that miR-210 acts as a positive regulator of osteoblastic differentiation by inhibiting the TGF-β/activin signaling pathway through inhibition of AcvR1b.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号