首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comet assay with nuclear extract incubation   总被引:6,自引:0,他引:6  
Alkaline comet assay is a simple sensitive method for detecting DNA strand breaks. However, at the time of cell lysis, only a fraction of the entire DNA damage appears as DNA strand breaks, while some DNA strand breaks may have been rejoined and some DNA lesions may still remain unexcised. We showed that nuclear extract (NE) prepared from human cells could excise the DNA adducts induced by UVC, X-ray, and methyl methanesulfonate (MMS). Thus, the comet assay with NE incubation allows a closer estimation of total DNA damage. Among the human urothelial carcinoma cell lines we tested, the NE of NTUB1 cells showed higher activity in excising the DNA adducts induced by UVC, but with a lower activity in excising the DNA adducts induced by MMS than the NE of BFTC905 cells. Moreover, under the same dose of X-ray irradiation, a larger difference in total DNA damage between two cell lines was revealed in comet assay incubated with NE than without NE. Therefore, the comet assay with NE incubation may be useful in the research of cancer risk, drug resistance, and DNA repair proteins.  相似文献   

2.
单细胞凝胶电泳技术及在土壤生态毒理学中的应用   总被引:5,自引:1,他引:4  
单细胞凝胶电泳技术又称为彗星实验,是最近几年发展起来的一种快速、简单、灵敏、可靠的检测细胞核DNA损伤的技术。总结了近几年来单细胞凝胶电泳技术的发展、原理、方法及其应用,并指出其下一步的发展趋势。彗星实验中,镶嵌于琼脂糖中的细胞核在电场中向正极移动,因细胞核与DNA片段迁移速率不同,而形成类似“彗星”的图像。目前采用的彗星实验有多种,可以检测诸如DNA双链断裂、单链断裂、碱不稳定位点等多种类型的DNA损伤。碱性彗星实验因其高灵敏度而被广泛采用。彗星实验的主要步骤包括细胞核悬浮液的获得、彗星电泳胶板制备、细胞裂解、DNA变性解旋、电泳、中和、染色和观察等。目前彗星实验广泛应用于各个研究领域,近年来开始用于环境污染的基因毒性研究和生物监测,并取得了迅速发展。  相似文献   

3.
The comet assay: a method to measure DNA damage in individual cells   总被引:4,自引:0,他引:4  
We present a procedure for the comet assay, a gel electrophoresis-based method that can be used to measure DNA damage in individual eukaryotic cells. It is versatile, relatively simple to perform and sensitive. Although most investigations make use of its ability to measure DNA single-strand breaks, modifications to the method allow detection of DNA double-strand breaks, cross-links, base damage and apoptotic nuclei. The limit of sensitivity is approximately 50 strand breaks per diploid mammalian cell. DNA damage and its repair in single-cell suspensions prepared from yeast, protozoa, plants, invertebrates and mammals can also be studied using this assay. Originally developed to measure variation in DNA damage and repair capacity within a population of mammalian cells, applications of the comet assay now range from human and sentinel animal biomonitoring (e.g., DNA damage in earthworms crawling through toxic waste sites) to measurement of DNA damage in specific genomic sequences. This protocol can be completed in fewer than 24 h.  相似文献   

4.
The comet assay for DNA damage and repair   总被引:9,自引:0,他引:9  
The comet assay (single-cell gel electrophoresis) is a simple method for measuring deoxyribonucleic acid (DNA) strand breaks in eukaryotic cells. Cells embedded in agarose on a microscope slide are lysed with detergent and high salt to form nucleoids containing supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in structures resembling comets, observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend toward the anode. The assay has applications in testing novel chemicals for genotoxicity, monitoring environmental contamination with genotoxins, human biomonitoring and molecular epidemiology, and fundamental research in DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the nucleoids are incubated with bacterial repair endonucleases that recognize specific kinds of damage in the DNA and convert lesions to DNA breaks, increasing the amount of DNA in the comet tail. DNA repair can be monitored by incubating cells after treatment with damaging agent and measuring the damage remaining at intervals. Alternatively, the repair activity in a cell extract can be measured by incubating it with nucleoids containing specific damage.  相似文献   

5.

Background

Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases.

Scope of review

With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells.

Major conclusions

There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay.

General significance

In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

6.
DNA damage is thought to play a relevant role in degenerative diseases and aging. Therefore, measuring DNA damage in living cells without artifacts is a critical issue, especially with very sensitive methods, such as the comet assay, which can detect very low levels of DNA damage. We show here that the procedures of cell subtype isolation increase DNA damage measured in human white blood cells (WBC) with the comet assay. We describe a novel and simple method to measure DNA strand breaks and oxidative damage separately in polymorphonuclear and mononuclear leukocytes, using whole blood without previous cell isolation. This method can be useful for measuring DNA damage in different subtypes of human peripheral leukocytes, avoiding the artifacts and the time involved in the cell separation procedures.  相似文献   

7.
Impact of the comet assay in radiobiology   总被引:1,自引:0,他引:1  
Until the development of single cell gel electrophoresis methods in the 1980s, measurement of radiation-induced DNA strand breaks in individual cells was limited to detection of micronuclei or chromosome breaks that measured the combined effects of exposure and repair. Development of methods to measure the extent of migration of DNA from single cells permitted detection of initial radiation-induced DNA breaks present in each cell. As cells need not be radiolabeled, there were new opportunities for analysis of radiation effects on cells from virtually any tissue, provided a single cell suspension could be prepared. The comet assay (as this method was subsequently named) was able to measure, for the first time, the fraction of radiobiologically hypoxic cells in mouse and human tumors. It was used to determine that the rate of rejoining of DNA breaks was relatively homogenous within an irradiated population of cells. Because individual cells were analyzed, heavily damaged or apoptotic cells could be identified and eliminated from analysis to determine "true" DNA strand break rejoining rates. Other examples of applications of the comet assay in radiobiology research include analysis of the inter-individual differences in response to radiation, effect of hypoxia modifying agents on tumor hypoxic fraction, the role of cell cycle position during DNA break induction and rejoining, non-targeted effects on bystander cells, and effects of charged particles on DNA fragmentation patterns.  相似文献   

8.
Hexavalent chromium (Cr[VI]) is a genotoxic carcinogen that has been associated with an increased risk of nasal and respiratory tract cancers following occupational exposure. Although the precise mechanism(s) remain to be elucidated, there is evidence for a role of oxidative DNA damage in the genotoxicity of Cr(VI). In the current study, human white blood cells were treated in vitro with non-cytotoxic concentrations of sodium dichromate (1-100 microM) for 1 h. Analysis by immunocytochemistry indicated the presence of elevated levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine at concentrations of sodium dichromate greater than 10 microM. In contrast, the lowest concentration of dichromate that resulted in a statistically significant increase in levels of formamidopyrimidine DNA glycosylase (FPG)-dependent DNA strand breaks was 100 nM (p<0.05). In addition, levels of both control and dichromate-induced FPG-dependent strand breaks from blood samples taken from the same individuals over 10 months proved remarkably reproducible in the individuals studied. The coefficients of variation over three different times of the year in control and dichromate-induced oxidative DNA damage for the four individuals were 54, 1, 37 and 4, and 45, 6, 21 and 18%, respectively. In summary, these results indicate that physiologically relevant, nanomolar concentrations of sodium dichromate cause DNA base oxidation in human white blood cells in vitro as assessed by the FPG-modified comet assay. Furthermore, comet assay data from an individual are reproducible over an extended period. This consistency is sufficient to suggest that the modified comet assay might prove to be a useful and sensitive biomonitoring tool for individuals occupationally exposed to hexavalent chromium.  相似文献   

9.
The ability to detect DNA damage using the alkaline comet assay depends on pH, lysis time and temperature during lysis. However, it is not known whether different lysis conditions identify different types of DNA damage or simply measure the same damage with different efficiencies. Results support the latter interpretation for radiation, but not for the alkylating agent MNNG. For X-ray-induced damage, cells showed the same amount of damage, regardless of lysis pH (12.3 compared to >13). However, increasing the duration of lysis at 5 degrees C from 1 h to more than 6 h increased the amount of DNA damage detected by almost twofold. Another twofold increase in apparent damage was observed by conducting lysis at room temperature (22 degrees C) for 6 h, but at the expense of a higher background level of DNA damage. The oxygen enhancement ratio and the rate of rejoining of single-strand breaks after irradiation were similar regardless of pH and lysis time, consistent with more efficient detection of strand breaks rather than detection of damage to the DNA bases. Conversely, after MNNG treatment, DNA damage was dependent on both lysis time and pH. With the higher-pH lysis, there was a reduction in the ratio of oxidative base damage to strand breaks as revealed using treatment with endonuclease III and formamidopyrimidine glycosylase. Therefore, our current results support the hypothesis that the increased sensitivity of longer lysis at higher pH for detecting radiation-induced DNA damage is due primarily to an increase in efficiency for detecting strand breaks, probably by allowing more time for DNA unwinding and diffusion before electrophoresis.  相似文献   

10.
The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains.  相似文献   

11.
The comet assay is a rapid, sensitive and inexpensive method for measuring DNA strand breaks. The comet assay has advantages over other DNA damage methods, such as sister chromatid exchange, alkali elution and micronucleus assay, because of its high sensitivity and that DNA strand breaks are determined in individual cells. This review describes a number of studies that used the comet assay to determine DNA strand breaks in aquatic animals exposed to genotoxicants both in vitro and in vivo, including assessment of DNA damage in aquatic animals collected from contaminated sites. One difficulty of using the comet assay in environmental work is that of comparing results from studies that used different methods, such as empirical scoring or comet tail lengths. There seems to be a consensus in more recent studies to use both the intensity of the tail and the length of the tail, i.e. DNA tail moment, percentage of DNA in the tail. The comet assay has been used to assess DNA repair and apoptosis in aquatic animals and modifications of the comet assay have allowed the detection of specific DNA lesions. There have been some recent studies to link DNA strand breaks in aquatic animals to effects on the immune system, reproduction, growth, and population dynamics. Further work is required before the comet assay can be used as a standard bio-indicator in aquatic environments, including standardization of methods (such as ASTM method E2186-02a) and measurements.  相似文献   

12.
To study possible genotoxic effects of occupational exposure to vanadium pentoxide, we determined DNA strand breaks (with alkaline comet assay), 8-hydroxy-2'deoxyguanosine (8-OHdG) and the frequency of sister chromatid exchange (SCE) in whole blood leukocytes or lymphocytes of 49 male workers employed in a vanadium factory in comparison to 12 non-exposed controls. In addition, vanadate has been tested in vitro to induce DNA strand breaks in whole blood cells, isolated lymphocytes and cultured human fibroblasts of healthy donors at concentrations comparable to the observed levels of vanadium in vivo. To investigate the impact of vanadate on the repair of damaged DNA, co-exposure to UV or bleomycin was used in fibroblasts, and DNA migration in the alkaline and neutral comet assay was determined. Although, exposed workers showed a significant vanadium uptake (serum: median 5.38microg/l, range 2.18-46.35microg/l) no increase in cytogenetic effects or oxidative DNA damage in leukocytes could be demonstrated. This was consistent with the observation that in vitro exposure of whole blood leukocytes and lymphocytes to vanadate caused no significant changes in DNA strand breaks below concentrations of 1microM (50microg/l). In contrast, vanadate clearly induced DNA fragmentation in cultured fibroblasts at relevant concentrations. Combined exposure of fibroblasts to vanadate/UV or vanadate/bleomycin resulted in non-repairable DNA double strand breaks (DSBs) as seen in the neutral comet assay. We conclude that exposure of human fibroblasts to vanadate effectively causes DNA strand breaks, and co-exposure of cells to other genotoxic agents may result in persistent DNA damage.  相似文献   

13.
The alkaline single cell gel electrophoresis (comet) assay was used to assess in vitro and in vivo genotoxicity of etoposide, a topoisomerase II inhibitor known to induce DNA strand breaks, and chlorothalonil, a fungicide widely used in agriculture. For in vivo studies, rats were sacrificed at various times after treatment and the induction of DNA strand breaks was assessed in whole blood, bone marrow, thymus, liver, kidney cortex and in the distal part of the intestine. One hour after injection, etoposide induced DNA damage in all organs studied except kidney, especially in bone marrow, thymus (presence of HDC) and whole blood. As observed during in vitro comet assay on Chinese hamster ovary (CHO) cells, dose- and time-dependent DNA effects occurred in vivo with a complete disappearance of damage 24 h after administration. Even though apoptotic cells were detected in vitro 48 h after cell exposure to etoposide, such a result was not found in vivo. After chlorothalonil treatment, no DNA strand breaks were observed in rat organs whereas a clear dose-related DNA damage was observed in vitro. The discrepancy between in vivo and in vitro models could be explained by metabolic and mechanistic reasons. Our results show that the in vivo comet assay is able to detect the target organs of etoposide and suggest that chlorothalonil is devoid of appreciable in vivo genotoxic activity under the protocol used.  相似文献   

14.
DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells   总被引:1,自引:0,他引:1  
DNA single-strand breaks (quantitative comet assay) were assessed to indicate ongoing genetic instability in a panel of human lung adenocarcinoma cell lines. Of these, 19/20 showed more DNA damage than a nontransformed cell line from human peripheral lung epithelium, HPL1D. DNA damage was significantly greater in those derived from pleural effusates vs those from lymph node metastases. DNA strand breaks correlated positively with superoxide (nitroblue tetrazolium reduction assay), and negatively with amount of OGG1, a repair enzyme for oxidative DNA damage. Levels of CuZn superoxide dismutase varied moderately among the lines and did not correlate with other parameters. A role for mutant K-ras through generation of reactive oxygen species was examined. Cells with mutant K-ras had significantly lower amounts of manganese superoxide dismutase (MnSOD) vs those with wild-type K-ras, but MnSOD protein correlated positively with superoxide levels. In a subset of cell lines with similar levels of MnSOD, comparable to those in HPL1D cells, K-ras activity correlated positively with levels of both superoxide and DNA strand breaks. These results suggest that persistent DNA damage in some lung adenocarcinoma cells may be caused by superoxide resulting from mutant K-ras activity, and that OGG1 is important for prevention of this damage.  相似文献   

15.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

16.
J A Woods  R F Bilton  A J Young 《FEBS letters》1999,449(2-3):255-258
In this study, the alkaline version of the comet assay has been used to determine the effect of beta-carotene supplementation (10 microM) on peroxide-initiated free radical-mediated DNA damage in human HepG2 hepatoma cells. In supplemented cells, beta-carotene failed to afford any protection against hydrogen peroxide-induced DNA strand breaks. Indeed, levels of strand breaks in supplemented cells were significantly higher than in cells exposed to hydrogen peroxide alone, especially after a long incubation period. In contrast, beta-carotene afforded significant levels of protection against DNA strand breaks when cells were treated with tert-butyl hydroperoxide. In this case, the level of protection increased as supplementation continued.  相似文献   

17.
X-ray-induced DNA base damage can be detected using endonuclease III and formamidopyrimidine-glycosylase, which create DNA strand breaks at enzyme-sensitive sites. Strand breaks can then be measured with excellent sensitivity using the alkaline comet assay, a single-cell gel electrophoresis method that detects DNA damage in individual cells. In using this approach to measure the oxygen enhancement ratio (OER) for radiation-induced base damage, we observed that the number of enzyme-sensitive sites increased with dose up to 4 Gy in air and 12 Gy in hypoxic WIL2NS cells. After rejoining of radiation-induced strand breaks, base damage was detected more easily after higher doses. The number of radiation-induced enzyme-sensitive sites was similar under both air and nitrogen. Base damage produced by hydrogen peroxide and 4-nitroquinoline-N-oxide (4NQO) was also measured. Results with hydrogen peroxide (20 min at 4 degrees C) were similar to those observed for X rays, indicating that enzyme-sensitive sites could be detected most efficiently when few direct strand breaks were present. Removing DNA-associated proteins before irradiation did not affect the ability to detect base damage. Base damage produced by 4NQO (30 min at 37 degrees C) was readily apparent after treatment with low concentrations of the drug when few 4NQO-induced strand breaks were present, but the detection sensitivity decreased rapidly as direct strand breaks increased after treatment with higher concentrations. We conclude that: (1) the OER for base damage is approximately 1.0, and (2) the presence of direct DNA strand breaks (>2000-4000 per cell) prevents accurate detection of base damage measured as enzyme-sensitive sites with the alkaline comet method.  相似文献   

18.
The effects of ethidium bromide (EtBr) on human lymphocytes were studied by the method of anomalous viscosity time dependence (AVTD) and by the comet assay. EtBr at low concentrations increased the maximum viscosity and time of radial migration as measured with AVTD at neutral conditions of lysis. A pronounced relaxation of DNA loops was observed with the neutral comet assay. The maximal comet length corresponded to 2 Mb DNA loops. At high concentrations of EtBr, 2 mg/ml, significant reduction in AVTD below control level was seen that suggested hypercondensation of chromatin. The hypercondensation was directly observed with the neutral comet assay. EtBr did not induce DNA strand breaks as measured by the alkaline comet assay. The hypercondensed nuclei could be decondensed by irradiation with gamma-rays or exposure to light. The data provide evidence that EtBr at high concentrations resulted in hypercondensation of chromatin below control level. The comet assay confirmed that the increase in AVTD peaks deals with relaxation of loops and AVTD decrease is caused by chromatin condensation. The prediction of the AVTD theory for a correlation between time of radial migration and condensation of chromatin was verified. Further, the data show that the comet assay at neutral conditions of lysis is rather sensitive to DNA loop relaxation in the absence of DNA damage. Finally, donor specificity was found for the hypercondensation.  相似文献   

19.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

20.
Cultured human diploid fibroblasts and cultured rat granulosa cells were exposed to intermittent and continuous radiofrequency electromagnetic fields (RF-EMF) used in mobile phones, with different specific absorption rates (SAR) and different mobile-phone modulations. DNA strand breaks were determined by means of the alkaline and neutral comet assay. RF-EMF exposure (1800 MHz; SAR 1.2 or 2 W/kg; different modulations; during 4, 16 and 24h; intermittent 5 min on/10 min off or continuous wave) induced DNA single- and double-strand breaks. Effects occurred after 16 h exposure in both cell types and after different mobile-phone modulations. The intermittent exposure showed a stronger effect in the comet assay than continuous exposure. Therefore we conclude that the induced DNA damage cannot be based on thermal effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号