首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-Maf,a downstream target of Pax6, is essential for chick lens development   总被引:22,自引:0,他引:22  
Vascular endothelial growth factor (VEGF)-mediated angiogenesis is an important part of bone formation. To clarify the role of VEGF isoforms in endochondral bone formation, we examined long bone development in mice expressing exclusively the VEGF120 isoform (VEGF120/120 mice). Neonatal VEGF120/120 long bones showed a completely disturbed vascular pattern, concomitant with a 35% decrease in trabecular bone volume, reduced bone growth and a 34% enlargement of the hypertrophic chondrocyte zone of the growth plate. Surprisingly, embryonic hindlimbs at a stage preceding capillary invasion exhibited a delay in bone collar formation and hypertrophic cartilage calcification. Expression levels of marker genes of osteoblast and hypertrophic chondrocyte differentiation were significantly decreased in VEGF120/120 bones. Furthermore, inhibition of all VEGF isoforms in cultures of embryonic cartilaginous metatarsals, through the administration of a soluble receptor chimeric protein (mFlt-1/Fc), retarded the onset and progression of ossification, suggesting that osteoblast and/or hypertrophic chondrocyte development were impaired. The initial invasion by osteoclasts and endothelial cells into VEGF120/120 bones was retarded, associated with decreased expression of matrix metalloproteinase-9. Our findings indicate that expression of VEGF164 and/or VEGF188 is important for normal endochondral bone development, not only to mediate bone vascularization but also to allow normal differentiation of hypertrophic chondrocytes, osteoblasts, endothelial cells and osteoclasts.  相似文献   

2.
The epidermal growth factor receptor (EGFR) and its ligands function in diverse cellular functions including cell proliferation, differentiation, motility, and survival. EGFR signaling is important for the development of many tissues, including skin, lungs, intestines, and the craniofacial skeleton. We have now determined the role of EGFR signaling in endochondral ossification. We analyzed long bone development in EGFR-deficient mice. EGFR deficiency caused delayed primary ossification of the cartilage anlage and delayed osteoclast and osteoblast recruitment. Ossification of the growth plates was also abnormal resulting in an expanded area of growth plate hypertrophic cartilage and few bony trabeculae. The delayed osteoclast recruitment was not because of inadequate expression of matrix metalloproteinases, including matrix metalloproteinase-9, which have previously been shown to be important for osteoclast recruitment. EGFR was expressed by osteoclasts, suggesting that EGFR ligands may act directly to affect the formation and/or function of these cells. EGFR signaling regulated osteoclast formation. Inhibition of EGFR tyrosine kinase activity decreased the generation of osteoclasts from cultured bone marrow cells.  相似文献   

3.
Bone development requires the recruitment of osteoclast precursors from surrounding mesenchyme, thereby allowing the key events of bone growth such as marrow cavity formation, capillary invasion, and matrix remodeling. We demonstrate that mice deficient in gelatinase B/matrix metalloproteinase (MMP)-9 exhibit a delay in osteoclast recruitment. Histological analysis and specialized invasion and bone resorption models show that MMP-9 is specifically required for the invasion of osteoclasts and endothelial cells into the discontinuously mineralized hypertrophic cartilage that fills the core of the diaphysis. However, MMPs other than MMP-9 are required for the passage of the cells through unmineralized type I collagen of the nascent bone collar, and play a role in resorption of mineralized matrix. MMP-9 stimulates the solubilization of unmineralized cartilage by MMP-13, a collagenase highly expressed in hypertrophic cartilage before osteoclast invasion. Hypertrophic cartilage also expresses vascular endothelial growth factor (VEGF), which binds to extracellular matrix and is made bioavailable by MMP-9 (Bergers, G., R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan. 2000. Nat. Cell Biol. 2:737-744). We show that VEGF is a chemoattractant for osteoclasts. Moreover, invasion of osteoclasts into the hypertrophic cartilage requires VEGF because it is inhibited by blocking VEGF function. These observations identify specific actions of MMP-9 and VEGF that are critical for early bone development.  相似文献   

4.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

5.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

6.
Osteoclast motility is thought to depend on rapid podosome assembly and disassembly. Both mu-calpain and m-calpain, which promote the formation and disassembly of focal adhesions, were observed in the podosome belt of osteoclasts. Calpain inhibitors disrupted the podosome belt, blocked the constitutive cleavage of the calpain substrates filamin A, talin, and Pyk2, which are enriched in the podosome belt, induced osteoclast retraction, and reduced osteoclast motility and bone resorption. The motility and resorbing activity of mu-calpain(-/-) osteoclast-like cells were also reduced, indicating that mu-calpain is required for normal osteoclast activity. Histomorphometric analysis of tibias from mu-calpain(-/-) mice revealed increased osteoclast numbers and decreased trabecular bone volume that was apparent at 10 weeks but not at 5 weeks of age. In vitro studies suggested that the increased osteoclast number in the mu-calpain(-/-) bones resulted from increased osteoclast survival, not increased osteoclast formation. Calcitonin disrupted the podosome ring, induced osteoclast retraction, and reduced osteoclast motility and bone resorption in a manner similar to the effects of calpain inhibitors and had no further effect on these parameters when added to osteoclasts pretreated with calpain inhibitors. Calcitonin inhibited the constitutive cleavage of a fluorogenic calpain substrate and transiently blocked the constitutive cleavage of filamin A, talin, and Pyk2 by a protein kinase C-dependent mechanism, demonstrating that calcitonin induces the inhibition of calpain in osteoclasts. These results indicate that calpain activity is required for normal osteoclast activity and suggest that calcitonin inhibits osteoclast bone resorbing activity in part by down-regulating calpain activity.  相似文献   

7.
Endochondral ossification in the epiphyseal growth plate of long bones is associated with programmed cell death (PCD) of a major portion of the chondrocytes. Here we tested the hypothesis that at the ossification front of the epiphyseal growth plate osteoclasts preferentially phagocytose chondrocytes that are undergoing PCD. We injected biotin-labelled annexin-V (anx-V-biotin, an early marker of PCD) intravenously in young adult mice. After 30 min of labelling, long bones were recovered and the tissue distribution examined of anx-V-biotin-labelled cells in the growth plate using ABC-peroxidase histochemistry. Positive staining for anx-V-biotin was detected in hypertrophic chondrocytes still present in closed lacunae at some distance from the ossification front. At the ossification front, chondrocyte lacunae were opened and close contacts were seen between tartrate-resistant acid phosphatase-positive osteoclasts and hypertrophic cartilage cells. Osteoclasts were significantly more frequently in contact with anx-V-biotin-labelled chondrocytes than with unlabelled chondrocytes. Osteoclasts also contained labelled and unlabelled phagocytic fragments within their cytoplasm. We conclude that in the growth plate osteoclasts preferentially phagocytose hypertrophic chondrocytes that are dying, suggesting these dying cells may signal osteoclasts for their removal.  相似文献   

8.
High mobility group box 1 protein (HMGB1) is a chromatin protein that has a dual function as a nuclear factor and as an extracellular factor. Extracellular HMGB1 released by damaged cells acts as a chemoattractant, as well as a proinflammatory cytokine, suggesting that HMGB1 is tightly connected to the process of tissue organization. However, the role of HMGB1 in bone and cartilage that undergo remodeling during embryogenesis, tissue repair, and disease is largely unknown. We show here that the stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. We analyzed the skeletal development of Hmgb1(-/-) mice during embryogenesis and found that endochondral ossification is significantly impaired due to the delay of cartilage invasion by osteoclasts, osteoblasts, and blood vessels. Immunohistochemical analysis revealed that HMGB1 protein accumulated in the cytosol of hypertrophic chondrocytes at growth plates, and its extracellular release from the chondrocytes was verified by organ culture. Furthermore, we demonstrated that the chondrocyte-secreted HMGB1 functions as a chemoattractant for osteoclasts and osteoblasts, as well as for endothelial cells, further supporting the conclusion that Hmgb1(-/-) mice are defective in cell invasion. Collectively, these findings suggest that HMGB1 released from differentiating chondrocytes acts, at least in part, as a regulator of endochondral ossification during osteogenesis.  相似文献   

9.
10.
Mice homozygous for targeted disruption of the zinc finger domain of Gli2 (Gli2(zfd/zfd)) die at birth with developmental defects in several organ systems including the skeleton. The current studies were undertaken to define the role of Gli2 in endochondral bone development by characterizing the molecular defects in the limbs and vertebrae of Gli2(zfd/zfd) mice. The bones of mutant mice removed by cesarian section at E16.5 and E18.5 demonstrated delayed endochondral ossification. This was accompanied by an increase in the length of cartilaginous growth plates, reduced bone tissue in the femur and tibia and by failure to develop the primary ossification centre in vertebral bodies. The growth plates of tibiae and vertebrae exhibited increased numbers of proliferating and hypertrophic chondrocytes with no apparent alteration in matrix mineralisation. The changes in growth plate morphology were accompanied by an increase in expression of FGF2 in proliferating chondrocytes and decreased expression of Indian hedgehog (Ihh), patched (Ptc) and parathyroid-hormone-related protein (PTHrP) in prehypertrophic cells. Furthermore, there was a reduction in expression of angiogenic molecules in hypertrophic chondrocytes, which was accompanied by a decrease in chondroclasts at the cartilage bone interface, fewer osteoblasts lining trabecular surfaces and a reduced volume of metaphyseal bone. These results indicate that functional Gli2 is necessary for normal endochondral bone development and that its absence results in increased proliferation of immature chondrocytes and decreased resorption of mineralised cartilage and bone formation.  相似文献   

11.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

12.
13.
Heparanase mRNA expression during fracture repair in mice   总被引:1,自引:1,他引:0  
Bone fracture healing takes place through endochondral ossification where cartilaginous callus is replaced by bony callus. Vascular endothelial growth factor (VEGF) is a requisite for endochondral ossification, where blood vessel invasion of cartilaginous callus is crucial. Heparanase is an endoglucuronidase that degrades heparan sulfate proteoglycans (HSPG) and releases heparin-binding growth factors including VEGF as an active form. To investigate the role of heparanase in VEGF recruitment during fracture healing, the expression of heparanase mRNA and VEGF, and vessel formation were examined in mouse fractured bone. On days 5 and 7 after the fracture, when mesenchymal cells proliferated and differentiated into chondrocytes, heparanase mRNA was detected in osteo(chondro)clasts and their precursors, but not in the inflammatory phase (day 3). On day 10, both VEGF and HSPG were produced by hypertrophic chondrocytes of the cartilaginous callus and by osteoblasts of the bony callus; numerous osteo(chondro)clasts resorbing the cartilage expressed strong heparanase signals. Adjacent to the cartilage resorption sites, angiogenesis with CD31-positive endothelial cells and osteogenesis with osteonectin-positive osteoblasts were observed. On days 14 and 21, osteoclasts in the woven bone tissue expressed heparanase mRNA. These data suggest that by producing heparanase osteo(chondro)clasts contribute to the recruitment of the active form of VEGF. Thus osteo(chondro)clasts may promote local angiogenesis as well as callus resorption in endochondral ossification during fracture healing.  相似文献   

14.
Perlecan (Hspg2) is a heparan sulfate proteoglycan expressed in basement membranes and cartilage. Perlecan deficiency (Hspg2(-/-)) in mice and humans causes lethal chondrodysplasia, which indicates that perlecan is essential for cartilage development. However, the function of perlecan in endochondral ossification is not clear. Here, we report the critical role of perlecan in VEGF signaling and angiogenesis in growth plate formation. The Hspg2(-/-) growth plate was significantly wider but shorter due to severely impaired endochondral bone formation. Hypertrophic chondrocytes were differentiated in Hspg2(-/-) growth plates; however, removal of the hypertrophic matrix and calcified cartilage was inhibited. Although the expression of MMP-13, CTGF, and VEGFA was significantly upregulated in Hspg2(-/-) growth plates, vascular invasion into the hypertrophic zone was impaired, which resulted in an almost complete lack of bone marrow and trabecular bone. We demonstrated that cartilage perlecan promoted activation of VEGF/VEGFR by binding to the VEGFR of endothelial cells. Expression of the perlecan transgene specific to the cartilage of Hspg2(-/-) mice rescued their perinatal lethality and growth plate abnormalities, and vascularization into the growth plate was restored, indicating that perlecan in the growth plate, not in endothelial cells, is critical in this process. These results suggest that perlecan in cartilage is required for activating VEGFR signaling of endothelial cells for vascular invasion and for osteoblast migration into the growth plate. Thus, perlecan in cartilage plays a critical role in endochondral bone formation by promoting angiogenesis essential for cartilage matrix remodeling and subsequent endochondral bone formation.  相似文献   

15.
During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage.  相似文献   

16.
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of alpha(v)beta(3) integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src(-/-) mice.  相似文献   

17.
Avascular cartilage is replaced by highly vascularized bone tissue during endochondral ossification, a process involving capillary invasion of calcified hypertrophic cartilage in association with apoptosis of hypertrophic chondrocytes, degradation of cartilage matrix and deposition of bone matrix. All of these events are closely controlled, especially by cytokines and growth factors. Leukaemia inhibitory factor (LIF), a member of the gp130 cytokine family, is involved in osteoarticular tissue metabolism and might participate in osteogenesis. Immunohistochemical staining showed that LIF is expressed in hypertrophic chondrocytes and vascular sprouts of cartilage and bone during rat and human osteogenesis. LIF is also present in osteoblasts but not in osteoclasts. Observations in a rat endochondral ossification model were confirmed by studies of human cartilage biopsies from foetuses with osteogenesis imperfecta. LIF was never detected in adult articular chondrocytes and bone-marrow mesenchymal cells. These results and other data in the literature suggest that LIF is involved in the delicate balance between the rate of formation of calcified cartilage and its vascularization for bone development.  相似文献   

18.
Understanding the molecular mechanisms by which cartilage formation is regulated is essential toward understanding the physiology of both embryonic bone development and postnatal bone growth. Although much is known about growth factor signaling in cartilage formation, the regulatory role of noncollagenous matrix proteins in this process are still largely unknown. In the present studies, we present evidence for a critical role of DMP1 (dentin matrix protein 1) in postnatal chondrogenesis. The Dmp1 gene was originally identified from a rat incisor cDNA library and has been shown to play an important role in late stage dentinogenesis. Whereas no apparent abnormalities were observed in prenatal bone development, Dmp1-deficient (Dmp1(-/-)) mice unexpectedly develop a severe defect in cartilage formation during postnatal chondrogenesis. Vertebrae and long bones in Dmp1-deficient (Dmp1(-/-)) mice are shorter and wider with delayed and malformed secondary ossification centers and an irregular and highly expanded growth plate, results of both a highly expanded proliferation and a highly expanded hypertrophic zone creating a phenotype resembling dwarfism with chondrodysplasia. This phenotype appears to be due to increased cell proliferation in the proliferating zone and reduced apoptosis in the hypertrophic zone. In addition, blood vessel invasion is impaired in the epiphyses of Dmp1(-/-) mice. These findings show that DMP1 is essential for normal postnatal chondrogenesis and subsequent osteogenesis.  相似文献   

19.
It is well known that angiogenesis is essential for the replacement of cartilage by bone during skeletal growth and regeneration. To address angiogenesis of endochondral ossification in the condyle, we examined the appearance of vascular endothelial growth factor (VEGF) and its receptor Flt-1 in condylar cartilage of the growing rat. The early expression of VEGF at various sites during condylar cartilage development indicates that VEGF plays a role in the regulation of angiogenesis at each site of bone formation. From the findings of Flt-1 immunoreactivity, the VEGF produced by the chondrocytes of the hypertrophic zone should contribute to the promotion of endothelial cell proliferation and to stimulate migration and activation of osteoclasts in condylar cartilage, resulting in the invasion of these cells into the mineralized zone.Junko Aoyama and Eiji Tanaka contributed equally to this work  相似文献   

20.
c-Cbl and Cbl-b are highly conserved adaptor proteins that participate in integrin signaling, regulating cytoskeletal organization, motility, and bone resorption. Deletion of both c-Cbl and Cbl-b in mice leads to embryonic lethality, indicating that the two proteins perform essential redundant functions. To examine the redundant actions of c-Cbl and Cbl-b in osteoclasts, we depleted c-Cbl in Cbl-b−/− osteoclasts by using a short hairpin RNA. Depleting both Cbl proteins disrupted both the podosome belt and the microtubule network and decreased bone-resorbing activity. Stabilizing the microtubules with paclitaxel or inhibiting histone deacetylase 6 (HDAC6), which destabilizes microtubules by deacetylating β-tubulin, protected both the microtubule network and the podosome belt. Examination of the mechanism involved demonstrated that the conserved four-helix bundle of c-Cbl''s tyrosine kinase binding domain bound to β-tubulin, and both c-Cbl and Cbl-b displaced HDAC6. In addition to the effects on microtubules and the podosome belt, depleting both Cbls significantly increased the levels of the proapoptotic protein Bim and apoptosis relative to the levels induced by eliminating either protein alone. Thus, both c-Cbl and Cbl-b promote bone resorption via the stabilization of microtubules, allowing the formation of the podosome belt in osteoclasts, and by promoting osteoclast survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号