首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have reexamined the possible role of the Na+/H+ antiport in the cellular response by PC12 pheochromocytoma cells to nerve growth factor (NGF). In contrast to previous reports, we observe no activation of Na+/H+ exchange in these cells, using a very sensitive assay based on the measurement of cytoplasmic pH with dimethylfluorescein dextran (Rothenberg et al., J. Biol. Chem., 258:4883-4809, 1983). Our measurements indicate that the PC12 pheochromocytoma cells, under all conditions tested, show a high rate of Na+/H+ exchange. The discrepancy between these observations and previous experiments could be due to differences in cells in different laboratories, but also to changes in cell adhesion induced by NGF. We describe conditions where intracellular pH and rates of Na+ uptake can be measured reliably in PC12 cells with adequate controls for cell adhesion. We conclude that activation of Na+/H+ exchange is neither sufficient nor required for the differentiation of PC12 cells induced by NGF.  相似文献   

3.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Nao- and Mgo-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+-Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+-Na+ exchange) or external Mg2+ (Mg2+-Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na+o-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+-Ca2+ exchange mechanism, Mg2+-Mg2+ exchange is not activated by external monovalent cations. (5) ATP gamma S replaces ATP in activating Mg2+-Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism.  相似文献   

4.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

5.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

6.
Tan ZJ  Chen SJ 《Biophysical journal》2007,92(10):3615-3632
A recently developed tightly bound ion model can account for the correlation and fluctuation (i.e., different binding modes) of bound ions. However, the model cannot treat mixed ion solutions, which are physiologically relevant and biologically significant, and the model was based on B-DNA helices and thus cannot directly treat RNA helices. In the present study, we investigate the effects of ion correlation and fluctuation on the thermodynamic stability of finite length RNA helices immersed in a mixed solution of monovalent and divalent ions. Experimental comparisons demonstrate that the model gives improved predictions over the Poisson-Boltzmann theory, which has been found to underestimate the roles of multivalent ions such as Mg2+ in stabilizing DNA and RNA helices. The tightly bound ion model makes quantitative predictions on how the Na+-Mg2+ competition determines helix stability and its helix length-dependence. In addition, the model gives empirical formulas for the thermodynamic parameters as functions of Na+/Mg2+ concentrations and helix length. Such formulas can be quite useful for practical applications.  相似文献   

7.
1. Macroscopic and single-channel currents through several types of cloned rat brain Na+ channels, expressed in Xenopus oocytes, were measured using the patch-clamp technique. 2. For all cloned channel types and for endogenous Na+ channels in chromaffin cells, intracellular Mg2+ blocks outward currents in a voltage-dependent manner similar to that in rat brain type II Na+ channel (Pusch et al. 1989). 3. A sodium-channel mutant (cZ-2) with long single-channel open times was used to examine the voltage-dependent reduction of single-channel outward current amplitudes by intracellular Mg2+. This reduction could be described by a simple blocking mechanism with half-maximal blockage at 0 mV in 1.8 mM intracellular Mg2+ and a voltage-dependence of e-fold per 39 mV (in 125 mM [Na] i ); this corresponds to a binding-site at an electrical distance of 0.32 from the inside of the membrane. 4. At low Mg2+ concentrations and high voltages, the open-channel current variance is significantly elevated with respect to zero [Mg] i . This indicates that Mg2+ acts as a fast blocker rather than gradually decreasing current, e.g. by screening of surface charges. Analysis of the open-channel variance yielded estimates of the block and unblock rate constants, which are of the order of 2 · 108 M–1 s–1 and 3.6 · 105 s–1 at 0 mV for the mutant cZ-2. 5. A quantitative analysis of tail-currents of wild-type 11 channels showed that the apparent affinity for intracellular Mg2+ strongly depends on [Na] i . This effect could be explained in terms of a multi-ion pore model. 6. Simulated action potentials, calculated on the basis of the Hodgkin-Huxley theory, are significantly reduced in their amplitude and delayed in their onset by postulating Mg2+ block at physiological levels of [Mg] i .abbreviations [Na]i intracellular Na+ concentration - [K] i intracellular K+ concentration - [Mg] i intracellular Mg2+ concentration - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis-[\-amino-ethyl ether] N,N-tetra acetic acid - TEA tetraethylammonium  相似文献   

8.
Ionic signalling is the most ancient form of regulation of cellular functions in response to environmental challenges. Signals, mediated by Na+ fluxes and spatio-temporal fluctuations of Na+ concentration in cellular organelles and cellular compartments contribute to the most fundamental cellular processes such as membrane excitability and energy production. At the very core of ionic signalling lies the Na+-K+ ATP-driven pump (or NKA) which creates trans-plasmalemmal ion gradients that sustain ionic fluxes through ion channels and numerous Na+-dependent transporters that maintain cellular and tissue homeostasis. Here we present a brief account of the history of research into NKA, Na+ -dependent transporters and Na+ signalling.  相似文献   

9.
Iodide (I(-)) is an essential constituent of the thyroid hormones triiodothyronine and thyroxine, which are required for the development of the central nervous system in the fetus and newborn. I(-) uptake in the thyroid is mediated by the Na(+)/I(-) symporter (NIS). NIS has gained particular medical interest due to its sensitivity to the environmental pollutant perchlorate (ClO(4)(-)) and its implication in radioiodide cancer treatment. Recently, others have shown that I(-) absorption in the intestine is mediated by NIS (Nicola, J. P., Basquin, C., Portulano, C., Reyna-Neyra, A., Paroder, M., and Carrasco, N. (2009) Am. J. Physiol. Cell Physiol. 296, C654-662). However, their data suggest the participation of other systems in the homeostasis of I(-), in particular because in vivo uptake studies revealed a ClO(4)(-)-insensitive transport component. Here, we describe Na(+)-coupled I(-) uptake by the human Na(+)/multivitamin transporter (hSMVT), a related protein isolated from the placenta, where it was suggested to supply the fetus with the water-soluble vitamins biotin and pantothenic acid, and α-lipoic acid. hSMVT-mediated Na(+)/I(-) symport is inhibited by the other three organic hSMVT substrates but not by NIS substrates; notably, hSMVT is insensitive to ClO(4)(-). Because hSMVT is found in the intestine and in many other tissues, we propose that hSMVT may play an important role in the homeostasis of I(-) in the body.  相似文献   

10.
T Günther  J Vormann 《FEBS letters》1992,297(1-2):132-134
Mg2+ efflux from Mg(2+)-loaded rat thymocytes was stimulated by 0.1 mM dibutyryl cAMP (db cAMP). The activation of Mg2+ efflux by db cAMP was more expressed at lower Mg(2+)-loading. cAMP induced only a very small increase in the concentration of intracellular free Mg2+ which cannot explain the activation of Na+/Mg2+ antiport. From these results it was concluded that cAMP increases the affinity of the Na+/Mg2+ antiporter for intracellular Mg2+, probably by phosphorylation.  相似文献   

11.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

12.
High potassium diets lead to an inverse regulation of sodium and magnesium absorption in ruminants, suggesting some form of cross talk. Previous Ussing chamber experiments have demonstrated a divalent sensitive Na(+) conductance in the apical membrane of ruminal epithelium. Using patch-clamped ruminal epithelial cells, we could observe a divalent sensitive, nonselective cation conductance (NSCC) with K(+) permeability > Cs(+) permeability > Na(+) permeability. Conductance increased and rectification decreased when either Mg(2+) or both Ca(2+) and Mg(2+) were removed from the internal or external solution or both. The conductance could be blocked by Ba(2+), but not by tetraethylammonium (TEA). Subsequently, we studied this conductance measured as short-circuit current (I(sc)) in Ussing chambers. Forskolin, IBMX, and theophylline are known to block both I(sc) and Na transport across ruminal epithelium in the presence of divalent cations. When the NSCC was stimulated by removing mucosal calcium, an initial decrease in I(sc) was followed by a subsequent increase. The cAMP-mediated increase in I(sc) was reduced by low serosal Na(+) and serosal addition of imipramine or serosal amiloride and depended on the availability of mucosal magnesium. Luminal amiloride had no effect. Flux studies showed that low serosal Na(+) reduced (28)Mg fluxes from mucosal to serosal. The data suggest that cAMP stimulates basolateral Na(+)/Mg(2+) exchange, reducing cytosolic Mg. This increases sodium uptake through a magnesium-sensitive NSCC in the apical membrane. Likewise, the reduction in magnesium uptake that follows ingestion of high potassium fodder may facilitate sodium absorption, as observed in studies of ruminal osmoregulation. Possibly, grass tetany (hypomagnesemia) is a side effect of this useful mechanism.  相似文献   

13.
Ebel H  Günther T 《FEBS letters》2003,543(1-3):103-107
Mg(2+) efflux from rat erythrocytes was measured in NaCl, NaNO(3), NaSCN and Na gluconate medium. Substitution of extracellular and intracellular Cl(-) with the permeant anions NO(3)(-) and SCN(-) reduced Mg(2+) efflux via Na(+)/Mg(2+) antiport. After substitution of extracellular Cl(-) with the non-permeant anion gluconate, Mg(2+) efflux was not significantly reduced. In Na gluconate medium, an influence of the changed membrane potential and intracellular pH on Mg(2+) efflux could be excluded. The results indicate the existence of Cl(-)-independent Na(+)/Mg(2+) antiport and of Na(+)/Mg(2+) antiport stimulated by intracellular Cl(-). Intracellular Cl(-), as determined by means of (36)Cl(-), was found to stimulate Na(+)/Mg(2+) antiport through a cooperative effect according to a sigmoidal kinetics. The Hill coefficient for intracellular Cl(-) amounted to 1.4-1.8, indicating that two intracellular Cl(-) may be simultaneously active. With respect to specificity, Cl(-) was most effective, followed by Br(-), J(-), and F(-). Stimulation of Na(+)/Mg(2+) antiport by intracellular Cl(-) together with intracellular Mg(2+) may play a role during deoxygenation of erythrocytes and in essential hypertension.  相似文献   

14.
To elucidate the spatial and temporal relationships between phosphatidyl inositol metabolism and changes in intracellular calcium levels, we developed a simultaneous imaging system using green fluorescent protein fused with the pleckstrin homology domain, and the fluorescent calcium indicator, FuraRed. The redistribution of the fusion protein, which represents the phosphatidyl inositol metabolism process, was quantified by calculating the coefficient of variance of the fluorescence over the entire cytosolic region, excluding the nucleus. This calculation increased the reproducibility, compared to the normalized fluorescence changes in arbitrarily selected cytosolic regions used in conventional analysis. The application of this method to analyzing the response of PC12h cells to a number of pharmacological stimuli showed that the extent of the phosphatidyl inositol metabolism was related to the calcium level, but not induced by calcium alone.  相似文献   

15.
16.
The total Mg2+ content of human red cells ([Mg]T,i) is partitioned between free and bound forms. The main cytoplasmic Mg2+ buffers are ATP and 2,3 bisphosphoglycerate. Haemoglobin binds free ATP and bisphosphoglycerate, preferentially in the deoxygenated state. Thus, the free ionized Mg2+ concentration ([Mg2+]i) oscillates with the oxy-deoxy condition of the cells. The binding reactions are also modulated by the pH changes that accompany the oxygenation-deoxygenation transitions. The complex interactions between Mg2+, its ligands and Hb can be encoded in a set of equilibrium equations representing all the known binding reactions of the system. To develop a comprehensive understanding of the Mg2+ homeostasis of intact red cells it is necessary to correct and refine the equations and parameters of the model by systematic comparisons between model predictions and measured cytoplasmic Mg2+ buffering curves under a variety of experimental conditions. Earlier models largely underestimated total Mg2+ binding in intact cells. We carried out experiments in which [Mg]T,i and [Mg2+]i were controlled over a wide range ([Mg]T,i between 0.1 and 23 mM) by the use of the ionophore A23187, under diverse metabolic conditions, and the results were used to interpret the adjustments required for good model fits. By the inclusion of low-affinity Mg2+ binding to ATP and bisphosphoglycerate, and also binding of Mg2+ to haemoglobin (four ions per tetramer) with an apparent dissociation constant of 45 mM we were able to realistically model, for the first time, all the experimentally observed changes in [Mg2+]i in human red cells under diverse metabolic conditions.  相似文献   

17.
Regulation of Na+/H+ exchange by fetal bovine serum was studied in Caco-2 cells, an established cell line derived from a human colon carcinoma. Cells were grown as polarized monolayers on collagen-coated filters and intracellular pH measured fluorometrically with 2',7'-bis(2-carboxymethyl)-5,6-carboxyfluorescein. Na+/H+ exchange was reduced 64% when cells were deprived of serum for 4 h. In contrast to other cell types, readdition of serum for 10 min did not activate Na+/H+ exchange; however, readdition of serum for 4 h restored Na+/H+ exchange to control values. This long-term effect of serum on Na+/H+ exchange activity could not be explained by changes in intracellular buffering capacity or intracellular [Na+]. 4-h serum deprivation reduced the K(t) of the exchanger for external Na+ from 21 to 6 mM, and reduced the V(max) by 57%, but did not alter the IC50 for amiloride in the presence of 140 mM Na+. Inhibition of protein synthesis with cycloheximide (5 microM) did not alter the effect of serum removal or readdition on Na+/H+ exchange. Low temperature (13 degrees C) completely prevented the inhibition of Na+/H+ exchange caused by the removal of serum. In addition, once Na+/H+ exchange was inhibited by serum removal at 37 degrees C, maintaining cells at 13 degrees C also blocked the recovery of Na+/H+ exchange caused by serum readdition. Conversely, cytochalasin D (0.1-20 microM) blocked the reduction of Na+/H+ exchange which occurred due to 4-h serum deprivation, but did not block the restoration of Na+/H+ exchange when the cells were re-exposed to serum for a further 4 h. Colchicine (20 microM) did not alter the effect of serum removal or readdition. These data suggest that serum regulates Na+/H+ exchange activity by a posttranslational mechanism which is dependent on F-actin.  相似文献   

18.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

19.
20.
Phenotypic characterization of the Arabidopsis thaliana transparent testa12 (tt12) mutant encoding a membrane protein of the multidrug and toxic efflux transporter family, suggested that TT12 is involved in the vacuolar accumulation of proanthocyanidin precursors in the seed. Metabolite analysis in tt12 seeds reveals an absence of flavan-3-ols and proanthocyanidins together with a reduction of the major flavonol quercetin-3-O-rhamnoside. The TT12 promoter is active in cells synthesizing proanthocyanidins. Using translational fusions between TT12 and green fluorescent protein, it is demonstrated that this transporter localizes to the tonoplast. Yeast vesicles expressing TT12 can transport the anthocyanin cyanidin-3-O-glucoside in the presence of MgATP but not the aglycones cyanidin and epicatechin. Inhibitor studies demonstrate that TT12 acts in vitro as a cyanidin-3-O-glucoside/H(+)-antiporter. TT12 does not transport glycosylated flavonols and procyanidin dimers, and a direct transport activity for catechin-3-O-glucoside, a glucosylated flavan-3-ol, was not detectable. However, catechin-3-O-glucoside inhibited TT12-mediated transport of cyanidin-3-O-glucoside in a dose-dependent manner, while flavan-3-ol aglycones and glycosylated flavonols had no effect on anthocyanin transport. It is proposed that TT12 transports glycosylated flavan-3-ols in vivo. Mutant banyuls (ban) seeds accumulate anthocyanins instead of proanthocyanidins, yet the ban tt12 double mutant exhibits reduced anthocyanin accumulation, which supports the transport data suggesting that TT12 mediates anthocyanin transport in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号