首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formins induce the nucleation and polymerization of unbranched actin filaments. They share three homology domains required for profilin binding, actin polymerization, and regulation. Diaphanous-related formins (DRFs) are activated by GTPases of the Rho/Rac family, whose interaction with the N-terminal formin domain is thought to displace a C-terminal Diaphanous-autoregulatory domain (DAD). We have determined the structure of the N-terminal domains of FHOD1 consisting of a GTPase-binding domain (GBD) and the DAD-recognition domain FH3. In contrast to the formin mDia1, the FHOD1-GBD reveals a ubiquitin superfold as found similarly in c-Raf1 or PI3 kinase. This GBD is recruited by Rac and Ras GTPases in cells and plays an essential role for FHOD1-mediated actin remodeling. The FHOD1-FH3 domain is composed of five armadillo repeats, similarly to other formins. Mutation of one residue in the predicted DAD-interaction surface efficiently activates FHOD1 in cells. These results demonstrate that DRFs have evolved different molecular solutions to govern their autoregulation and GTPase specificity.  相似文献   

2.
Formins are multidomain proteins that regulate numerous cytoskeleton-dependent cellular processes. These effects are mediated by the presence of two regions of homology, formin homology 1 and FH2. The diaphanous-related formins (DRFs) are distinguished by the presence of interacting N- and C-terminal regulatory domains. The GTPase binding domain and diaphanous inhibitory domain (DID) are found in the N terminus and bind to the diaphanous autoregulatory domain (DAD) found in the C terminus. Adjacent to the DID is an N-terminal dimerization motif (DD) and coiled-coil region (CC). The N terminus of Dia1 is also proposed to contain a Rho-independent membrane-targeting motif. We undertook an extensive structure/function analysis of the mDia1 N terminus to further our understanding of its role in vivo. We show here that both DID and DD are required for efficient autoinhibition in the context of full-length mDia1 and that the DD of mDia1 and mDia2, like formin homology 2, mediates homo- but not heterodimerization with other DRF family members. In contrast, our results suggest that the DID/DAD interaction mediates heterodimerization of full-length mDia1 and mDia2 and that the auto-inhibited conformation of DRFs is oligomeric. In addition, we also show that the DD/CC region is required for the Rho-independent membrane targeting of the isolated N terminus.  相似文献   

3.
4.
Diaphanous-related formins (DRFs) mediate GTPase-triggered actin rearrangements to regulate central cellular processes, such as cell motility and cytokinesis. The DRF FHOD1 interacts with the Rho-GTPase Rac1 and mediates formation of actin stress fibers in its deregulated form; the physiologically relevant activities and molecular mechanisms of endogenous FHOD1, however, are still unknown. Here we report that FHOD1 physically associates via the N-terminal part of its FH2 domain with the central domain of ROCK1. Although FHOD1 does not affect the kinase activity of ROCK1, the DRF is an efficient substrate for phosphorylation by ROCK1. Co-expression of FHOD1 and ROCK1 results in the generation of nonapoptotic plasma membrane (PM) blebs, to which the DRF is efficiently recruited. Blebbing induced by FHOD1 and ROCK1 depends on F-actin integrity, the Rho-ROCK cascade, and Src activity and is reminiscent of the recently described PM blebs triggered by expression of Src homology 4 (SH4) domain PM targeting signals. Consistently, endogenous FHOD1 is required in SH4 domain expressing cells for efficient PM blebbing and rounded cell morphology in two-dimensional cultures or three-dimensional matrices, respectively. Efficient association of FHOD1 with ROCK1, as well as recruitment of the DRF to blebs, depends on Src activity, suggesting that the functional interaction between both proteins is regulated by Src. These results define a role for endogenous FHOD1 in SH4 domain-induced blebbing and suggest that its activity is regulated by ROCK1 in a Src-dependent manner.  相似文献   

5.
Diaphanous-related formins (DRFs) regulate the nucleation and polymerization of unbranched actin filaments. The activity of DRFs is inhibited by an intramolecular interaction between their N-terminal regulatory region and a conserved C-terminal segment termed the Diaphanous autoinhibitory domain (DAD). Binding of GTP bound Rho to the mDia1 N terminus releases this autoinhibitory restraint. Here, we describe the crystal structure of the DAD segment of mDia1 in complex with the relevant N-terminal fragment, termed the DID domain. The structure reveals that the DAD segment forms an amphipathic helix that binds a conserved, concave surface on the DID domain. Comparison with the structure of the mDia1 N terminus bound to RhoC suggests that release of the autoinhibitory DAD interaction is accomplished largely by Rho-induced restructuring of the adjacent GTPase binding subdomain (GBD), but also by electrostatic repulsion and a small, direct steric occlusion of the DAD binding cleft by Rho itself.  相似文献   

6.
Diaphanous-related formins (DRFs) are actin nucleators that mediate rearrangements of the actin cytoskeleton downstream of specific Rho GTPases. The DRF Formin Homology 2 Domain containing 1 (FHOD1) interacts with the Rac1 GTPase and induces the formation of and associates with bundled actin stress fibers. Here we report that active FHOD1 also coordinates microtubules with these actin stress fibers. Expression of a constitutive active FHOD1 variant in HeLa cells not only resulted in pronounced formation of FHOD1-actin fibers but also caused marked cell elongation and parallel alignment of microtubules without affecting cytokinesis of these cells. The analysis of deletions in the FH1 and FH2 functional regions revealed that the integrity of both domains was strictly required for FHOD1's effects on the cytoskeleton. Dominant-negative approaches demonstrated that filament coordination and cell elongation depended on the activity of the Rho-ROCK cascade, but did not involve Rac or Cdc42 activity. Experimental depolymerization of actin filaments or microtubules revealed that the formation of FHOD1-actin fibers was a prerequisite for the polarization of microtubules. However, only simultaneous disruption of both filament systems reversed the cell elongation induced by activated FHOD1. Thus, sustained cell elongation was a consequence of FHOD1-mediated actin-microtubule coordination. These results suggest filament coordination as a conserved function of mammalian DRFs.  相似文献   

7.
8.
Structural basis of Rho GTPase-mediated activation of the formin mDia1   总被引:1,自引:0,他引:1  
Diaphanous-related formins (DRFs) regulate dynamics of unbranched actin filaments during cell contraction and cytokinesis. DRFs are autoinhibited through intramolecular binding of a Diaphanous autoinhibitory domain (DAD) to a conserved N-terminal regulatory element. Autoinhibition is relieved through binding of the GTPase RhoA to the N-terminal element. We report the crystal structure of the dimeric regulatory domain of the DRF, mDia1. Dimerization is mediated by an intertwined six-helix bundle, from which extend two Diaphanous inhibitory domains (DIDs) composed of five armadillo repeats. NMR and biochemical mapping indicate the RhoA and DAD binding sites on the DID partially overlap, explaining activation of mDia1 by the GTPase. RhoA binding also requires an additional structurally independent segment adjacent to the DID. This regulatory construction, involving a GTPase binding site spanning a flexibly tethered arm and the inhibitory module, is observed in many autoinhibited effectors of Ras superfamily GTPases, suggesting evolutionary pressure for this design.  相似文献   

9.
Formin proteins direct the nucleation and assembly of linear actin filaments in a variety of cellular processes using their conserved formin homology 2 (FH2) domain. Diaphanous-related formins (DRFs) are effectors of Rho-family GTPases, and in the absence of Rho activation they are maintained in an inactive state by intramolecular interactions between their regulatory N-terminal region and a C-terminal segment referred to as the DAD domain. Although structures are available for the isolated DAD segment in complex with the interacting region in the N-terminus, it remains unclear how this leads to inhibition of actin assembly by the FH2 domain. Here we describe the crystal structure of the N-terminal regulatory region of formin mDia1 in complex with a C-terminal fragment containing both the FH2 and DAD domains. In the crystal structure and in solution, these fragments form a tetrameric complex composed of two interlocking N+C dimers. Formation of the tetramer is likely a consequence of the particular N-terminal construct employed, as we show that a nearly full-length mDia1 protein is dimeric, as are other autoinhibited N+C complexes containing longer N-terminal fragments. The structure provides the first view of the intact C-terminus of a DRF, revealing the relationship of the DAD to the FH2 domain. Delineation of alternative dimeric N+C interactions within the tetramer provides two general models for autoinhibition in intact formins. In both models, engagement of the DAD by the N-terminus is incompatible with actin filament formation on the FH2, and in one model the actin binding surfaces of the FH2 domain are directly blocked by the N-terminus.  相似文献   

10.
Formin proteins modulate both nucleation and elongation of actin filaments through processive movement of their dimeric formin homology 2 (FH2) domains with filament barbed ends. Mammals possess at least 15 formin genes. A subset of formins termed "diaphanous formins" are regulated by autoinhibition through interaction between an N-terminal diaphanous inhibitory domain (DID) and a C-terminal diaphanous autoregulatory domain (DAD). Here, we found several striking features for the mouse formin, INF2. First, INF2 interacted directly with actin through a region C-terminal to the FH2. This second interacting region sequesters actin monomers, an activity that is dependent on a WASP homology 2 (WH2) motif. Second, the combination of the FH2 and C-terminal regions of INF2 resulted in its curious ability to accelerate both polymerization and depolymerization of actin filaments. The mechanism of the depolymerization activity, which is novel for formin proteins, involves both the monomer binding ability of the WH2 and a potent severing activity that is dependent on covalent attachment of the FH2 to the C terminus. Phosphate inhibits both the depolymerization and severing activities of INF2, suggesting that phosphate release from actin subunits in the filament is a trigger for depolymerization. Third, INF2 contains an N-terminal DID, and the WH2 motif likely doubles as a DAD in an autoinhibitory interaction.  相似文献   

11.

Background

Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).

Methodology/Principal Findings

Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.

Conclusions/Significance

Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.  相似文献   

12.
Vaccinia virus dissemination relies on the N-WASP–ARP2/3 pathway, which mediates actin tail formation underneath cell-associated extracellular viruses (CEVs). Here, we uncover a previously unappreciated role for the formin FHOD1 and the small GTPase Rac1 in vaccinia actin tail formation. FHOD1 depletion decreased the number of CEVs forming actin tails and impaired the elongation rate of the formed actin tails. Recruitment of FHOD1 to actin tails relied on its GTPase binding domain in addition to its FH2 domain. In agreement with previous studies showing that FHOD1 is activated by the small GTPase Rac1, Rac1 was enriched and activated at the membrane surrounding actin tails. Rac1 depletion or expression of dominant-negative Rac1 phenocopied the effects of FHOD1 depletion and impaired the recruitment of FHOD1 to actin tails. FHOD1 overexpression rescued the actin tail formation defects observed in cells overexpressing dominant-negative Rac1. Altogether, our results indicate that, to display robust actin-based motility, vaccinia virus integrates the activity of the N-WASP–ARP2/3 and Rac1–FHOD1 pathways.  相似文献   

13.
14.
INF2 is an unusual formin protein in that it accelerates both actin polymerization and depolymerization, the latter through an actin filament-severing activity. Similar to other formins, INF2 possesses a dimeric formin homology 2 (FH2) domain that binds filament barbed ends and is critical for polymerization and depolymerization activities. In addition, INF2 binds actin monomers through its diaphanous autoregulatory domain (DAD) that resembles a Wiskott-Aldrich syndrome protein homology 2 (WH2) sequence C-terminal to the FH2 that participates in both polymerization and depolymerization. INF2-DAD is also predicted to participate in an autoinhibitory interaction with the N-terminal diaphanous inhibitory domain (DID). In this work, we show that actin monomer binding to the DAD of INF2 competes with the DID/DAD interaction, thereby activating actin polymerization. INF2 is autoinhibited in cells because mutation of a key DID residue results in constitutive INF2 activity. In contrast, purified full-length INF2 is constitutively active in biochemical actin polymerization assays containing only INF2 and actin monomers. Addition of proteins that compete with INF2-DAD for actin binding (profilin or the WH2 from Wiskott-Aldrich syndrome protein) decrease full-length INF2 activity while not significantly decreasing activity of an INF2 construct lacking the DID sequence. Profilin-mediated INF2 inhibition is relieved by an anti-N-terminal antibody for INF2 that blocks the DID/DAD interaction. These results suggest that free actin monomers can serve as INF2 activators by competing with the DID/DAD interaction. We also find that, in contrast to past results, the DID-containing N terminus of INF2 does not directly bind the Rho GTPase Cdc42.  相似文献   

15.
The mammalian formin, mDia1, is an actin nucleation factor. Experiments in cells and in vitro show that the N-terminal region potently inhibits nucleation by the formin homology 2 (FH2) domain-containing C terminus and that RhoA binding to the N terminus partially relieves this inhibition. Cellular experiments suggest that potent inhibition depends upon the presence of the diaphanous auto-regulatory domain (DAD) C-terminal to FH2. In this study, we examine in detail the N-terminal and C-terminal regions required for this inhibition and for RhoA relief. Limited proteolysis of an N-terminal construct from residues 1-548 identifies two stable truncations: 129-548 and 129-369. Analytical ultracentrifugation suggests that 1-548 and 129-548 are dimers, whereas 129-369 is monomeric. All three N-terminal constructs inhibit nucleation by the full C terminus. Although inhibition by 1-548 is partially relieved by RhoA, inhibition by 129-548 or 129-369 is RhoA-resistant. At the C terminus, DAD deletion does not affect nucleation but decreases inhibitory potency of 1-548 by 20,000-fold. Synthetic DAD peptide binds both 1-548 and 129-548 with similar affinity and partially relieves nucleation inhibition. C-terminal constructs are stable dimers. Our conclusions are as follows: 1) DAD is an affinity-enhancing motif for auto-inhibition; 2) an N-terminal domain spanning residues 129-369 (called DID for diaphanous inhibitory domain) is sufficient for auto-inhibition; 3) a dimerization region C-terminal to DID increases the inhibitory ability of DID; and 4) DID alone is not sufficient for RhoA relief of auto-inhibition, suggesting that sequences N-terminal to DID are important to RhoA binding. An additional finding is that FH2 domain-containing constructs of mDia1 and mDia2 lose >75% nucleation activity upon freeze-thaw.  相似文献   

16.
Li F  Higgs HN 《Current biology : CB》2003,13(15):1335-1340
Formin proteins are widely expressed in eukaryotes and play essential roles in assembling specific cellular actin-based structures. Formins are defined by a Formin Homology 2 (FH2) domain, as well as a proline-rich FH1 domain that binds the actin monomer binding protein, profilin, and other ligands. Constructs including FH2 of budding yeast Bni1 or fission yeast Cdc12 formins nucleate actin filaments in vitro. In this study, we demonstrate that FH2-containing constructs of murine mDia1 (also called p140 mDia or Drf1) are much more potent actin nucleators than the yeast formins. FH1 is necessary for nucleation when actin monomers are profilin bound. mDia1 is a member of the Diaphanous formin subfamily (Dia), whose members contain an N-terminal Rho GTPase binding domain (GBD) and a C-terminal Diaphanous autoinhibitory domain (DAD, ). Based on cellular and in vitro binding studies, an autoinhibitory model for Dia formin regulation proposes that GBD binding to DAD inhibits Dia-induced actin remodeling, whereas Rho binding activates by releasing GBD from DAD. Supporting this model, our results show that an N-terminal mDia1 construct strongly inhibits actin nucleation by the C terminus. RhoA partially relieves inhibition but does so when bound to either GDP or GTP analogs. Both N- and C-terminal mDia1 constructs appear to be multimeric.  相似文献   

17.
Mammalian diaphanous-related (mDia) formins act as Rho GTPase effectors during cytoskeletal remodeling. Rho binding to mDia amino-terminal GTPase-binding domains (GBDs) causes the adjacent Dia-inhibitory domain (DID) to release the carboxyl-terminal Dia-autoregulatory (DAD) domain that flanks the formin homology-2 (FH2) domain. The release of DAD allows the FH2 domain to then nucleate and elongate nonbranched actin filaments. DAD, initially discovered as a region of homology shared between a phylogenetically divergent set of formin proteins, is comprised of a core motif, MDXLLXL, and an adjacent region is comprised of numerous basic residues, typically RRKR in the mDia family. Here, we show that these specific amino acids within the basic region of DAD contribute to the binding of DID and therefore the maintenance of the mDia autoregulatory mechanism. In addition, expression of full-length versions of mDia2 containing amino acid substitutions in either the DAD core or basic regions causes profound changes in the F-actin architecture, including the formation of filopodia-like structures that rapidly elongate from the cell edge. These studies further refine our understanding of the molecular contribution of DAD to mDia control and the role of mDia2 in the assembly of membrane protrusions.  相似文献   

18.
Mammalian and fungal Diaphanous-related formin homology (DRF) proteins contain several regions of conserved sequence homology. These include an amino-terminal GTPase binding domain (GBD) that interacts with activated Rho family members and formin homology domains that mediate targeting or interactions with signaling kinases and actin-binding proteins. DRFs also contain a conserved Dia-autoregulatory domain (DAD) in their carboxyl termini that binds the GBD. The GBD is a bifunctional autoinhibitory domain that is regulated by activated Rho. Expression of the isolated DAD in cells causes actin fiber formation and stimulates serum response factor-regulated gene expression. Inhibitor experiments show that the effects of exogenous DAD expression are dependent upon cellular Dia proteins. Alanine substitution of DAD consensus residues that disrupt GBD binding also eliminate DAD biological activity. Thus, DAD expression activates nuclear signaling and actin remodeling by mimicking activated Rho and unlatching the autoinhibited state of the cellular complement of Dia proteins.  相似文献   

19.
Formin homology proteins are a highly conserved family of cytoskeletal remodeling proteins best known for their ability to induce the formation of long unbranched actin filaments. They accomplish this by nucleating the de novo polymerization of F-actin and also by acting as F-actin barbed end "leaky cappers" that allow filament elongation while antagonizing the function of capping proteins. More recently, it has been reported that the FH2 domains of FRL1 and mDia2 and the plant formin AFH1 are able to bind and bundle actin filaments via distinct mechanisms. We find that like FRL1, FRL2 and FRL3 are also able to bind and bundle actin filaments. In the case of FRL3, this activity is dependent upon a proximal DAD/WH2-like domain that is found C-terminal to the FH2 domain. In addition, we show that, like other Diaphanous-related formins, FRL3 activity is subject to autoregulation mediated by the interaction between its N-terminal DID and C-terminal DAD. In contrast, the DID and DAD of FRL2 also interact in vivo and in vitro but without inhibiting FRL2 activity. These data suggest that current models describing DID/DAD autoregulation via steric hindrance of FH2 activity must be revised. Finally, unlike other formins, we find that the FH2 and N-terminal dimerization domains of FRL2 and FRL3 are able to form hetero-oligomers.  相似文献   

20.
Cyclic GMP-dependent protein kinase I (PKGI) mediates vascular relaxation by nitric oxide and related nitrovasodilators and inhibits vascular smooth muscle cell (VSMC) migration. To identify VSMC proteins that interact with PKGI, the N-terminal protein interaction domain of PKGIalpha was used to screen a yeast two-hybrid human aortic cDNA library. The formin homology (FH) domain-containing protein, FHOD1, was found to interact with PKGIalpha in this screen. FH domain-containing proteins bind Rho-family GTPases and regulate actin cytoskeletal dynamics, cell migration, and gene expression. Antisera to FHOD1 were raised and used to characterize FHOD1 expression and distribution in vascular cells. FHOD1 is highly expressed in human coronary artery, aortic smooth muscle cells, and in human arterial and venous endothelial cells. In glutathione S-transferase pull-down experiments, the FHOD1 C terminus (amino acids 964-1165) binds full-length PKGI. Both in vitro and intact cell studies demonstrate that the interaction between FHOD1 and PKGI is decreased 3- to 5-fold in the presence of the PKG activator, 8Br-cGMP. Immunofluorescence studies of human VSMC show that FHOD1 is cytoplasmic and is concentrated in the perinuclear region. PKGI also directly phosphorylates FHOD1, and studies with wild-type and mutant FHOD1-derived peptides identify Ser-1131 in the FHOD1 C terminus as the unique PKGI phosphorylation site in FHOD1. These studies demonstrate that FHOD1 is a PKGI-interacting protein and substrate in VSMCs and show that cyclic GMP negatively regulates the FHOD1-PKGI interaction. Based on the known functions of FHOD1, the data are consistent with a role for FHOD1 in cyclic GMP-dependent inhibition of VSMC stress fiber formation and/or migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号