首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.  相似文献   

2.
Multidrug resistance protein (MRP)1/ABCC1 transports organic anionic conjugates and confers resistance to cytotoxic xenobiotics. In addition to two membrane spanning domains (MSDs) typical of most ATP-binding cassette (ABC) transporters, MRP1 has a third MSD (MSD0) of unknown function. Unlike some topologically similar ABCC proteins, removal of MSD0 has minimal effect on function, nor does it prevent MRP1 from trafficking to basolateral membranes in polarized cells. However, we find that independent of cell type, the truncated protein accumulates in early/recycling endosomes. Using a real-time internalization assay, we demonstrate that MSD0 is important for MRP1 retention in, or recycling to, the plasma membrane. We also show that MSD0 traffics independently to the cell surface and promotes membrane localization of the core-region of MRP1 when the two protein fragments are coexpressed. Finally, we demonstrate that MSD0 becomes essential for trafficking of MRP1 when the COOH-terminal region of the protein is mutated. These studies demonstrate that MSD0 and the COOH-terminal region contain redundant trafficking signals, which only become essential when one or the other region is missing or is mutated. These data explain apparent differences in the trafficking requirement for MSD0 and the COOH-terminal region of MRP1 compared with other ABCC proteins.  相似文献   

3.
Yang Y  Mo W  Zhang JT 《Biochemistry》2010,49(51):10854-10861
Resistance to multiple anticancer agents is a major obstacle in the successful treatment of cancers. Overexpression of some ATP-binding cassette (ABC) membrane transporters such as ABCC1 has been shown to be a major contributor of multidrug resistance (MDR) in both laboratory cell line models and the clinical setting. ABCC1 has been thought to function as a homodimer with a putative dimerization domain located in the first 281 amino acid residues, including MSD0 and L0 domains. In this study, we further mapped in detail the dimerization site and placed it in TM5 and ECL3 in MSD0 using co-expression and co-immunoprecipitation of a series of deletion constructs. TM5 and ECL3 in one subunit appear to interact with TM5 and ECL3 in the opposing subunit in a sequence-independent manner, but their physical location together with the hydrophobicity of TM5 and the length of ECL3 appears to be important contributors to the dimerization ability of ABCC1.  相似文献   

4.
Multidrug resistance is a serious problem in successful cancer chemotherapy. Studies using model cell lines have demonstrated that overexpression of some members of the ATP-binding cassette (ABC) transporter superfamily, such as ABCC1, causes enhanced efflux and, thus, decreased accumulation of multiple anticancer drugs, which leads to increased cell survival. Unlike most other ABC transporters, ABCC1 has an additional membrane-spanning domain (MSD0) with a putative extracellular amino terminus of 32 amino acids. However, the function of MSD0 and the role of the extracellular amino terminus are largely unknown. In this study, we examined the structural folding and the function of the amino terminus. We found that it has a U-shaped folding with the bottom of the U-structure facing cytoplasm and both ends in extracellular space. We also found that this U-shaped amino terminus probably functions as a gate to regulate the drug transport activity of human ABCC1.  相似文献   

5.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

6.
Ycf1p is the prototypical member of the yeast multidrug resistance-associated protein (MRP) subfamily of ATP-binding cassette (ABC) transporters. Ycf1p resides in the vacuolar membrane and mediates glutathione-dependent transport processes that result in resistance to cadmium and other xenobiotics. A feature common to many MRP proteins that distinguishes them from other ABC transporters is the presence of a hydrophobic N-terminal extension (NTE), whose function is not clearly established. The NTE contains a membrane spanning domain (MSD0) with five transmembrane spans and a cytosolic linker region (L0). The goal of this study was to determine the functional significance of the NTE of Ycf1p by examining the localization and functional properties of Ycf1p partial molecules, expressed either singly or together. We show that MSD0 plays a critical role in the vacuolar membrane trafficking of Ycf1p, whereas L0 is dispensable for localization. On the other hand, L0 is required for transport function, as determined by monitoring cadmium resistance. We also examine an unusual aspect of Ycf1p biology, namely, the posttranslational proteolytic processing that occurs within a lumenal loop of Ycf1p. Processing is shown to be Pep4p dependent and thus serves as a convenient marker for proper vacuolar localization. The processed fragments associate with each other, suggesting that these natural cleavage products contribute together to Ycf1p function.  相似文献   

7.
The phenomenon of multidrug resistance in cancer is often associated with the overexpression of the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter expression to poor outcome in several cancer types, leading to the development of transporter inhibitors. Three generations of inhibitors later, we are still no closer to validating the 'Pgp hypothesis', the idea that increased chemotherapy efficacy can be achieved by inhibition of transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures encountered in the development of clinical inhibitors of ABC transporters. We discuss the challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for clinical intervention.  相似文献   

8.
Chen ZS  Tiwari AK 《The FEBS journal》2011,278(18):3226-3245
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.  相似文献   

9.
Frelet A  Klein M 《FEBS letters》2006,580(4):1064-1084
With regard to structure-function relations of ATP-binding cassette (ABC) transporters several intriguing questions are in the spotlight of active research: Why do functional ABC transporters possess two ATP binding and hydrolysis domains together with two ABC signatures and to what extent are the individual nucleotide-binding domains independent or interacting? Where is the substrate-binding site and how is ATP hydrolysis functionally coupled to the transport process itself? Although much progress has been made in the elucidation of the three-dimensional structures of ABC transporters in the last years by several crystallographic studies including novel models for the nucleotide hydrolysis and translocation catalysis, site-directed mutagenesis as well as the identification of natural mutations is still a major tool to evaluate effects of individual amino acids on the overall function of ABC transporters. Apart from alterations in characteristic sequence such as Walker A, Walker B and the ABC signature other parts of ABC proteins were subject to detailed mutagenesis studies including the substrate-binding site or the regulatory domain of CFTR. In this review, we will give a detailed overview of the mutation analysis reported for selected ABC transporters of the ABCB and ABCC subfamilies, namely HsCFTR/ABCC7, HsSUR/ABCC8,9, HsMRP1/ABCC1, HsMRP2/ABCC2, ScYCF1 and P-glycoprotein (Pgp)/MDR1/ABCB1 and their effects on the function of each protein.  相似文献   

10.
Chen Q  Yang Y  Liu Y  Han B  Zhang JT 《Biochemistry》2002,41(29):9052-9062
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) transport superfamily which also includes human multidrug resistance 1 (MDR1) gene product P-glycoprotein (Pgp). Overexpression of MRP1 or Pgp causes multidrug resistance in cancer cells. Different from Pgp, MRP1 contains an extra membrane-spanning domain (MSD1) with a putative extracellular amino terminus in addition to the core structure of two MSDs and two NBDs (nucleotide-binding domains). The structural and functional significance of the additional MSD1 in MRP1 remains elusive. In this study, we generated an IgG1 subclass monoclonal antibody, IU2H10, specific to the amino terminus of human MRP1 and mapped its epitope to 10 amino acids (S8ADGSDPLWD17). It can be used for Western blot, immunoprecipitation, and indirect immunofluorescence studies of human MRP1. However, surprisingly we found that IU2H10 cannot react with MRP1 unless cells are permeabilized. Furthermore, the IU2H10 epitope is exposed extracellularly when the carboxyl-terminal core domain of human MRP1 is deleted. Examination of the amino-terminal sequence of human MRP1 suggests that it consist of mainly coiled structures. These observations provide evidence for a model that is different from the prevailing extracellular location of the amino terminus of human MRP1. It is possible that part of the amino terminus of human MRP1, following exposure to the lumen of the endoplasmic reticulum, is retracted to the cytoplasm.  相似文献   

11.
Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette membrane transport superfamily and is responsible for multidrug resistance in cancer cells. Currently, there are nine known human MRPs. Distinct from many other members of the ATP-binding cassette superfamily, human MRP1 and four other MRPs have an additional membrane-spanning domain (MSD) with a putative extracellular amino terminus. The functional significance of this additional MSD (MSD1) is currently unknown. To understand the role of MSD1 in human MRP1 structure and function, we studied the amino-terminal 33 amino acids. We found that the amino terminus of human MRP1 has two cysteine residues (Cys(7) and Cys(32)) that are conserved among the five human MRPs that have MSD1. Mutation analyses of the two cysteines in human MRP1 revealed that the Cys(7) residue is critical for the MRP1-mediated drug resistance and leukotriene C(4) transport activity. On the other hand, mutation of Cys(32) reduced only moderately the MRP1 function. The effect of Cys(7) mutation on MRP1 activity appears to be due to the 5-7-fold decrease in the maximal transport rate V(max). We also found that mutation of Cys(7) changed the amino-terminal conformation of MRP1. This conformational change is likely responsible for the decrease in V(max) of LTC(4) transport mediated by the mutant MRP1. Based on these studies, we conclude that the amino terminus of human MRP1 is important and that the Cys(7) residue plays a critical role in maintaining the proper structure and function of human MRP1.  相似文献   

12.
Westlake CJ  Qian YM  Gao M  Vasa M  Cole SP  Deeley RG 《Biochemistry》2003,42(48):14099-14113
Multidrug resistance protein (MRP) 1 is a member of the ABCC branch of the ATP binding cassette (ABC) transporter superfamily that can confer resistance to natural product chemotherapeutic drugs and transport a variety of conjugated organic anions, as well as some unconjugated compounds in a glutathione- (GSH-) dependent manner. In addition to the two tandemly repeated polytopic membrane-spanning domains (MSDs) typical of ABC transporters, MRP1 and its homologues MRP2, -3, -6, and -7 contain a third NH(2)-terminal MSD. The cytoplasmic loop (CL3) connecting this MSD, but apparently not the MSD itself, is required for MRP1 leukotriene C(4) (LTC(4)) transport activity, substrate binding and appropriate trafficking of the protein to the basolateral membrane. We have used a baculovirus dual-expression system to produce various functionally complementing fragments of MRP1 in insect Sf21 cells to precisely define the region in CL3 that is required for activity and substrate binding. Using a parallel approach in polarized MDCK-I cells, we have also defined the region of CL3 that is required for basolateral trafficking. The CL3 NH(2)- and COOH-proximal functional boundaries have been identified as Cys(208) and Asn(260), respectively. Cys(208) also corresponds to the NH(2)-proximal boundary of the region required for basolateral trafficking in MDCK-I cells. However, additional residues downstream of the CL3 COOH-proximal functional boundary extending to Lys(270) were found to be important for basolateral localization. Finally, we show that regions in CL3 necessary for LTC(4) binding and transport are also required for binding of the photoactivatable GSH derivative azidophenacyl-GSH.  相似文献   

13.

Background

One of the major mechanisms that could produce resistance to antineoplastic drugs in cancer cells is the ATP binding cassette (ABC) transporters. The ABC transporters can significantly decrease the intracellular concentration of antineoplastic drugs by increasing their efflux, thereby lowering the cytotoxic activity of antineoplastic drugs. One of these transporters, the multiple resistant protein 7 (MRP7, ABCC10), has recently been shown to produce resistance to antineoplastic drugs by increasing the efflux of paclitaxel. In this study, we examined the effects of BCR-Abl tyrosine kinase inhibitors imatinib, nilotinib and dasatinib on the activity and expression of MRP7 in HEK293 cells transfected with MRP7, designated HEK-MRP7-2.

Methodology and/or Principal Findings

We report for the first time that imatinib and nilotinib reversed MRP7-mediated multidrug resistance. Our MTT assay results indicated that MRP7 expression in HEK-MRP7-2 cells was not significantly altered by incubation with 5 µM of imatinib or nilotinib for up to 72 hours. In addition, imatinib and nilotinib (1-5 µM) produced a significant concentration-dependent reversal of MRP7-mediated multidrug resistance by enhancing the sensitivity of HEK-MRP7-2 cells to paclitaxel and vincristine. Imatinib and nilotinib, at 5 µM, significantly increased the accumulation of [3H]-paclitaxel in HEK-MRP7-2 cells. The incubation of the HEK-MRP7-2 cells with imatinib or nilotinib (5 µM) also significantly inhibited the efflux of paclitaxel.

Conclusions

Imatinib and nilotinib reverse MRP7-mediated paclitaxel resistance, most likely due to their inhibition of the efflux of paclitaxel via MRP7. These findings suggest that imatinib or nilotinib, in combination with other antineoplastic drugs, may be useful in the treatment of certain resistant cancers.  相似文献   

14.
Lapatinib, a tyrosine kinase inhibitor, is used in the treatment of advanced or metastatic breast cancer overexpressing human epidermal receptor 2 (HER2). Lapatinib can modulate the function of ATP-binding cassette (ABC) transporters (ABCB1 and ABCG2), which are the major mechanism responsible for multidrug resistance (MDR) in cancer. In this study, we investigated the effect of lapatinib on multidrug resistance–associated protein 1 (MRP1 [ABCC1]), MRP2 (ABCC2), MRP4 (ABCC4) and lung relative resistance protein (LRP) drug efflux pumps. We demonstrated that lapatinib could enhance the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells in vitro and in vivo, but no effect in MRP2-, MPR4- and LRP-overexpressing cells. Furthermore, lapatinib significantly increased the accumulation of rhodamine 123 (Rho123) and doxorubicin (DOX) in MRP1-overexpressing cells. However, lapatinib did not alter the protein or mRNA expression levels of MRP1. Further studies showed that the level of phosphorylation of AKT and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) were not altered at the indicated concentrations of lapatinib. In conclusion, lapatinib enhanced the efficacy of conventional chemotherapeutic agents in MRP1-overexpressing cells by inhibiting MRP1 transport function without altering the level of AKT or ERK1/2 phosphorylation. These findings will encourage the clinical research of lapatinib combined with conventional chemotherapeutic drugs in MRP1-overexpressing cancer patients.  相似文献   

15.
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.  相似文献   

16.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   

17.
MRP1 is an ABC (or ATP binding cassette) membrane transport protein shown to confer resistance to structurally dissimilar drugs. Studies of MRP1 topology suggested the presence of a hydrophobic N-domain with five potential membrane-spanning domains linked to an MDR1-like core (MSD1-NBD1-L1-MSD2-NBD2) by an intracellular linker domain (L0). MRP1-mediated multidrug resistance is thought to be due to enhanced drug efflux. However, little is known about MRP1-drug interaction and its drug binding site(s). We previously developed several photoreactive probes to study MRP1-drug interactions. In this report, we have used eight MRP1-HA variants that were modified to have hemagglutinin A (HA) epitopes inserted at different sites in MRP1 sequence. Exhaustive in-gel digestion of all IAARh123 photoaffinity-labeled MRP1-HA variants revealed the same profile of photolabeled peptides as seen for wild type MRP1. Photolabeling of the different MRP1-HA variants followed by digestion with increasing concentrations of trypsin or Staphylococcus aureus V8 protease (1:800 to 1:5 w/w) and immunoprecipitation with anti-HA mAb identified two small photolabeled peptides ( approximately 6-7 kDa) from MRP1-HA(574) and MRP1-HA(1222). Based on the location of the HA epitopes in the latter variants together with molecular masses of the two peptides, the photolabeled amino acid residues were localized to MRP1 sequences encoding transmembranes 10 and 11 of MSD1 (Ser(542)-Arg(593)) and transmembranes 16 and 17 of MSD2 (Cys(1205)-Glu(1253)). Interestingly, the same sequences in MRP1 were also photolabeled with a structurally different photoreactive drug, IACI, confirming the significance of transmembranes 10, 11, 16 and 17 in MRP1 drug binding. Taken together, the results in this study provide the first delineation of the drug binding site(s) of MRP1. Furthermore, our findings suggest the presence of common drug binding site(s) for structurally dissimilar drugs.  相似文献   

18.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.  相似文献   

19.
Multidrug resistance (MDR) of cancer cells poses a serious obstacle to successful chemotherapy. The overexpression of multispecific ATP-binding cassette transporters appears to be the main mechanism of MDR. A search for MDR-reversing agents able to sensitize resistant cells to chemotherapy is ongoing in the hope of their possible clinical use. Studies of MDR modulators, although they have not produced clinically beneficial effects yet, may greatly enrich our knowledge about MDR transporters, their specificity and mechanism of action, especially substrate and/or inhibitor recognition. In the present review, interactions of three groups of modulators: phenothiazines, flavonoids and stilbenes with both P-glycoprotein and MRP1 are discussed. Each group of compounds is likely to interact with the MDR transporters by a different mechanism. Phenothiazines probably interact with drug binding sites, but they also could indirectly affect the transporter's activity by perturbing lipid bilayers. Flavonoids mainly interact with ABC proteins within their nucleotide-binding domains, though the more hydrophobic flavonoids may bind to regions within transmembrane domains. The possible mechanism of MDR reversal by stilbenes may result from their direct interaction with the transporter (possibly within substrate recognition sites) but some indirect effects such as stilbene-induced changes in gene expression pattern and in apoptotic pathways should also be considered. Literature data as well as some of our recent results are discussed. Special emphasis is put on cases when the interactions of a given compound with both P-glycoprotein and MRP1 have been studied simultaneously.  相似文献   

20.
The yeast vacuolar membrane protein Ycf1p and its mammalian counterpart, MRP1, belong to the ABCC subfamily of ATP-binding cassette (ABC) transporters that rid cells of toxic endogenous and xenobiotic compounds. Like most members of the ABCC subfamily, Ycf1p contains an N-terminal extension in addition to its ABC "core" domain and transports substrates in the form of glutathione conjugates. Ycf1p is subject to complex regulation to ensure its optimal function. Previous studies showed that Ycf1p activity is stimulated by a guanine nucleotide exchange factor, Tus1p, and is positively regulated by phosphorylation in its ABC core domain at residues Ser-908 and Thr-911. Here we provide evidence that phosphorylation of Ser-251 in the Ycf1p N-terminal extension negatively regulates activity. Mutant Ycf1p-S251A exhibits increased resistance to cadmium in vivo and increased Ycf1p-dependent transport of [(3)H]estradiol-beta-17-glucuronide in vitro as compared with wild-type Ycf1p. Activity is restored to the wild-type level for Ycf1-S251E. To identify kinase(s) that negatively regulate Ycf1p function, we conducted an integrated membrane yeast two-hybrid (iMYTH) screen and identified two kinase genes, CKA1 and HAL5, deletion of which increases Ycf1p function. Genetic evidence suggests that Cka1p may regulate Ycf1p function through phosphorylation of Ser-251 either directly or indirectly. Overall, this study provides compelling evidence that negative, as well as positive, regulation of Ycf1p is mediated by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号