首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以草菇(Volvariella volvacea)乙酰木聚糖酯酶AXE、AXEII为研究对象,采用生物信息学方法对其核苷酸及编码的蛋白氨基酸序列、组成成分、信号肽、跨膜结构域、疏水性/亲水性、蛋白质三级结构等进行预测和分析,并构建了乙酰木聚糖酯酶蛋白家族的系统进化树。结果表明,草菇的AXE蛋白由349个氨基酸残基组成,编码蛋白质的分子量为37.55 ku,等电点为8.58,属稳定性蛋白质。AXEII由253个氨基酸残基组成,编码蛋白质的分子量为27.70 ku,等电点为5.82,属稳定性蛋白质。两者均为亲水性蛋白,存在信号肽,AXE与AXEII的潜在磷酸化位点总数分别为15个和11个。草菇的AXE与灰盖鬼伞(Coprinopsis cinerea)亲缘关系较近,AXEII与裂褶菌(Schizophyllum commune)亲缘关系较近。  相似文献   

2.
半纤维素是一类丰富可再生而又亟待开发利用的生物质资源,将半纤维素降解为糖类进而生产木糖醇及其它化学品是利用生物质资源的关键一步。乙酰木聚糖酯酶是降解半纤维素的一个重要酶,它能够水解乙酰化木聚糖中的木糖残基上的2位和3位的O 乙酰基,在工业、农业及食品业具有广阔的应用前景。综述了乙酰木聚糖酯酶的分类、酶学性质、催化机制、基因克隆和协同酶解等方面的研究进展,同时对该研究进行了展望。  相似文献   

3.
枯草芽胞杆菌芽胞表面展示技术是把枯草芽胞杆菌作为芽胞表面展示的宿主来展示目的蛋白的一种技术。该技术不仅具备芽胞表面展示技术可展示分子量较大的目的蛋白、目的蛋白无需跨膜及芽胞的极强抗逆性等特点外,同时由于该技术的宿主菌--枯草芽胞杆菌的分子生物学信息研究得比较清楚、安全性高而被广泛应用。介绍了枯草芽胞杆菌表面展示近10年在生产疫苗和固定化酶方面的进展,并对如何提高表面展示目的蛋白的产量做了简要概述。  相似文献   

4.
研究生物量、pH、毒死蜱浓度和温度对枯草芽胞杆菌3374菌株(编号为GU086422)在水溶液中降解毒死蜱特性,考察该菌株对白菜上毒死蜱残留的降解特性。结果表明,在毒死蜱质量浓度为240 mg/L、pH7.0、温度30℃的适宜条件下,枯草芽胞杆菌3374菌株对毒死蜱的降解率达到92.48%。该菌株能够有效提高白菜叶面上毒死蜱残留的降解速度,表明其在白菜上具有有效降解毒死蜱的能力,在无公害农产品生产中具有广阔的应用潜力。  相似文献   

5.
耐碱芽胞杆菌木聚糖酶的形成条件及特性   总被引:7,自引:0,他引:7  
通过碱性选择平板分离到耐碱的芽胞杆菌B-141菌株。该菌在碱性(pH10)条件及木聚糖存在下能产生胞外木聚精酶。该酶最适反应温度为60℃,在60℃以下基本稳定;酶反应的最适pH为3~7,但在碱性条件下稳定,在pH10环境处理60min,仍保持约70%的活性。从TLC分析可知,该酶作用于燕麦木聚糖时,主要产物为大于三体的寡糖。  相似文献   

6.
乙酰木聚糖酯酶可以水解乙酰化木聚糖中的O-乙酰取代基团,消除该基团对木聚糖酶水解的空间阻碍作用,增强木聚糖酶对木聚糖的亲和力和降解能力。以白色链霉菌基因组为模板,利用简并PCR和TAIL-PCR扩增获得长约741 bp阅读框片段,编码247个氨基酸。生物信息学分析表明,该多肽片段具有AXE1家族蛋白保守区域;与已知的乙酰木聚糖酯酶蛋白C端区相比,相似性较高,二级和三级结构空间排布特点极为相似;初步判定该多肽片段为白色链霉菌乙酰木聚糖酯酶的C端区域。  相似文献   

7.
温度对枯草芽胞杆菌α-淀粉酶活性的影响   总被引:1,自引:0,他引:1  
目的:探讨温度对枯草芽胞杆菌分解淀粉的影响,找出α-淀粉酶活性区问。方法:设淀粉实验组及无淀粉对照组。接种枯草芽胞杆菌、大肠埃希菌4组16管,空白对照、实验管4组8管,15℃、25℃、37℃、40℃温箱连续培养,测量不同时间段内pH值及酶活值,观察颜色的变化。结果:在15℃~40℃下温度越高接种管颜色、pH值、透光度变化越明显。结论:温度对枯草芽胞杆菌。一淀粉酶活性影响较大,尤其在25℃~40℃区间内分解淀粉能力很强,这为选择微生物法解决淀粉导致的水源富营养化提供了依据.也是可行的。  相似文献   

8.
[目的]本试验旨在筛选引导表达外源木聚糖酶基因高效分泌的信号肽,为枯草芽胞杆菌木聚糖酶高效分泌表达系统提供元件.[方法]构建信号肽筛选载体,载体是以含壮观霉素抗性基因的大肠-枯草穿梭载体为基本骨架,目标蛋白为耐碱性木聚糖酶,可在麦芽糖启动子Pglv诱导下表达.从枯草芽胞杆菌A1747基因组中扩增获得24个Sec途径信号肽,并将其全部链接到至筛选载体上,并在枯草芽胞杆菌WB700中实现表达分泌.重组菌在3%麦芽糖诱导下培养24h后用DNS法测定上清酶活.[结果]成功构建信号肽筛选载体pGPSX及24个表达载体,实现木聚糖酶表达分泌.且不同信号肽对于引导外源木聚糖酶分泌能力不同,其中YnfF信号肽引导分泌目标蛋白效率最高,上清酶活为37.2IU/mL.[结论]试验证明在枯草杆菌中对外源蛋白进行信号肽筛选是提高其分泌的有效途径,并获得了针对木聚糖酶高效分泌信号肽YnfF.  相似文献   

9.
枯草芽胞杆菌孢子表面展示技术是最近十几年新兴的一种外源蛋白固定方法,已在酶学、疫苗学、靶向药物制备、金属污染治理等领域获得了广泛应用。以孢子衣壳蛋白为载体蛋白,已经成功地把许多抗原、酶和其他蛋白展示在孢子外表面。枯草芽胞杆菌孢子衣壳由多种衣壳蛋白组成,但可用做载体蛋白的并不多,且它们的特性不同。综合介绍了枯草芽胞杆菌孢子表面展示外源蛋白这种新型技术的具体机理,及其在国内外各领域应用的研究进展。  相似文献   

10.
旨在以枯草芽胞杆菌Bacillus subtilis J为生产菌株,发酵生产β-甘露聚糖酶,通过优化产酶条件,以达到提高β-甘露聚糖酶产量的目的。利用DNS比色法检测β-甘露聚糖酶活力,采用单因素试验,研究碳氮源种类及碳氮源浓度、温度、pH、接种量和装液量对菌株Bacillus subtilis J发酵产β-甘露聚糖酶的影响,结合响应面试验设计确定菌株Bacillus subtilis J发酵产甘露聚糖酶的最优发酵培养条件。单因素试验和响应面试验得到最优的发酵条件为魔芋粉28 g/L,胰蛋白胨21 g/L,K2HPO4 6 g/L,MgSO4·7H2O 1 g/L,温度31℃,pH值8.5,接种量1%(体积分数),装液量50 mL/250 mL,发酵周期24 h。利用优化后的培养基生产β-甘露聚糖酶,其酶活力达到84.38 U/mL,是初始发酵培养基产酶活力的3.36倍。通过对发酵条件的优化,大幅度提高了β-甘露聚糖酶的产量,为其工业生产提供参考。  相似文献   

11.
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.  相似文献   

12.
Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan‐degrading organism whose genome encodes a large number of open reading frames annotated as fiber‐degrading enzymes. We have determined the three‐dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains—a C‐terminal SGNH domain and an N‐terminal jelly‐roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para‐nitrophenyl acetate and para‐nitrophenyl butyrate. The suite of fiber‐degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Regioselective deacetylations of nine glycosides catalyzed by acetyl xylan esterase from Bacillus pumilus have been studied. The glycosides were methyl and benzyl glycosides of the tetraacetates of α-D-glucopyranose, α-D-galactopyranose and α-D-mannopyranose, and the methyl glycosides of tetra-O-acetyl-β-D-glucopyranose, tetra-O-acetyl-β-D-galactopyranose and tetra-O-acetyl-α-D-glucopyranose. The kinetics of successive deacetylations was monitored by GLC and 21 sugar acetates have been identified.  相似文献   

14.
SGNH-type acetyl xylan esterases (AcXEs) play important roles in marine and terrestrial xylan degradation, which are necessary for removing acetyl side groups from xylan. However, only a few cold-adapted AcXEs have been reported, and the underlying mechanisms for their cold adaptation are still unknown because of the lack of structural information. Here, a cold-adapted AcXE, AlAXEase, from the Arctic marine bacterium Arcticibacterium luteifluviistationis SM1504T was characterized. AlAXEase could deacetylate xylooligosaccharides and xylan, which, together with its homologs, indicates a novel SGNH-type carbohydrate esterase family. AlAXEase showed the highest activity at 30 °C and retained over 70% activity at 0 °C but had unusual thermostability with a Tm value of 56 °C. To explain the cold adaption mechanism of AlAXEase, we next solved its crystal structure. AlAXEase has similar noncovalent stabilizing interactions to its mesophilic counterpart at the monomer level and forms stable tetramers in solutions, which may explain its high thermostability. However, a long loop containing the catalytic residues Asp200 and His203 in AlAXEase was found to be flexible because of the reduced stabilizing hydrophobic interactions and increased destabilizing asparagine and lysine residues, leading to a highly flexible active site. Structural and enzyme kinetic analyses combined with molecular dynamics simulations at different temperatures revealed that the flexible catalytic loop contributes to the cold adaptation of AlAXEase by modulating the distance between the catalytic His203 in this loop and the nucleophilic Ser32. This study reveals a new cold adaption strategy adopted by the thermostable AlAXEase, shedding light on the cold adaption mechanisms of AcXEs.  相似文献   

15.
Cell wall hemicelluloses and pectins are O‐acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O‐acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody‐tissue‐specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall‐bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β‐1,4‐endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1‐expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.  相似文献   

16.
Enzymatic deconstruction of xylan for biofuel production   总被引:1,自引:0,他引:1  
The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction.  相似文献   

17.
Production of acetyl esterase (EC 3.1.1.6) by Fusarium oxysporum strain F3 was enhanced by optimization of growth conditions. Under optimal conditions, activities as high as 0.89U/ml of culture medium were obtained. The culture filtrate was equally active on p-nitrophenyl acetate and acetylxylan. The enzyme produced 71% deacetylation of acetylxylan in 2h at 40C. Activity was optimized at pH6.5 and at 55C. The respective Km values for p-nitrophenyl acetate and acetylxylan were 0.25mM and 1.05% (w/v) and the Vm values were 0.65 and 0.43mol acetate/min/mg protein.  相似文献   

18.
Mass spectrometric analysis was used to compare the roles of two acetyl esterases (AE, carbohydrate esterase family CE16) and three acetyl xylan esterases (AXE, families CE1 and CE5) in deacetylation of natural substrates, neutral (linear) and 4-O-methyl glucuronic acid (MeGlcA) substituted xylooligosaccharides (XOS). AEs were similarly restricted in their action and apparently removed in most cases only one acetyl group from the non-reducing end of XOS, acting as exo-deacetylases. In contrast, AXEs completely deacetylated longer neutral XOS but had difficulties with the shorter ones. Complete deacetylation of neutral XOS was obtained after the combined action of AEs and AXEs. MeGlcA substituents partially restricted the action of both types of esterases and the remaining acidic XOS were mainly substituted with one MeGlcA and one acetyl group, supposedly on the same xylopyranosyl residue. These resisting structures were degraded to great extent only after inclusion of α-glucuronidase, which acted with the esterases in a synergistic manner. When used together with xylan backbone degrading endoxylanase and β-xylosidase, both AE and AXE enhanced the hydrolysis of complex XOS equally.  相似文献   

19.
YesT, a putative protein from Bacillus subtilis ATCC 6633 that has been provisionally classified as a rhamnogalacturonan acetyl esterase (RGAE) in CE-12 family, was cloned, expressed in Escherichiacoli Rosetta (DE3), and purified. The enzyme is monomeric with a molecular mass of 37 kDa and presents thermophilic properties similar to RGAE from Aspergillus aculeatus, although YesT is more alkaliphilic. The study of inhibitors confirmed the importance of the His and the nucleophilic Ser for the esterase activity, apart from the Asp from the catalytic triad. This enzyme also presents broad substrate specificity, and is active toward 7-aminocephalosporanic acid, cephalosporin C, p-nitrophenyl acetate, beta-naphthyl acetate, glucose pentaacetate, and acetylated xylan. Moreover, YesT achieves a synergistic effect together with xylanase A toward acetylated xylan. As a member of the SGNH family, it does not adopt the common alpha/beta hydrolase fold. The primary sequence analysis and multiple sequence alignment revealed the lack of a two beta-stranded antiparallel sheet, which results in a clear change in the structure together with the disappearance of one of the three 3(10)-helices presented in RGAE structure. The similarities found in this article among the topological diagrams of RGAE, YesT, and Esterase A from Streptomyces scabies, Platelet-Activating Factor AcetylHydrolase, isoform Ib, alpha subunit [PAF-AH(Ib)alpha(1)], PAF-AH(Ib)alpha(2), the esterase domain from hemagglutinin esterase fusion glycoprotein (HEF1) from Influenza C virus, the thioesterase I (TAP) from E. coli, the hypothetical protein a1r1529 from Nostoc sp., and the hypothetical YxiM precursor that all belong to the SGNH family could indicate a possible divergence of such proteins from a common ancestor.  相似文献   

20.
Blair DE  van Aalten DM 《FEBS letters》2004,570(1-3):13-19
Family 4 carbohydrate esterases deacetylate polymeric carbohydrate substrates such as chitin, acetyl xylan and peptidoglycan. Although some of these enzymes have recently been enzymologically characterised, neither their structure nor their reaction mechanism has been defined. Sequence conservation in this family has pointed to a conserved core, termed the NodB homology domain. We describe the cloning, purification and 1.9 Å crystal structure of PdaA, a peptidoglycan deacetylase from Bacillus subtilis. The enzyme assumes a fold related to a (β/)8 barrel, with a long groove on the surface of the protein that harbours all conserved residues. A complex with the substrate analogue N-acetyl-glucosamine was refined to 2.25 Å resolution, revealing interactions of an aspartic acid and three histidines, all conserved in the NodB homology domain, with the ligand. The PdaA structure provides a template for interpreting the wealth of sequence data on family 4 carbohydrate esterases in a structural context and represents a first step towards understanding the reaction mechanism of this family of enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号