首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajagopal  S.  Mohanty  Prasanna  Murthy  S.D.S. 《Photosynthetica》2000,36(4):617-620
Effect of UV-B (1.9 W m-2) alone or in combination with supplemental "white light". WL (20 W m-2) exposure was studied on the energy transfer process of intact phycobilisomes isolated from Spirulina platensis. Exposure of UV-B or supplemental irradiation induced a decrease in room temperature fluorescence intensity and caused a shift towards shorter wavelengths. The low temperature fluorescence measurements showed that UV-B impairs energy transfer from phycocyanin to allophycocyanin B and the extent of damage may be reduced by the exposure to supplemental WL.  相似文献   

2.
The effects of ultraviolet-B (UV-B between 290 and 320 nm) on photosynthesis and growth characteristics were investigated in field grown cassava (Manihot esculentum Crantz). Plants were grown at ambient and ambient plus a 5.5kJ m?2 d?1 supplementation of UV-B radiation for 95 d. The supplemental UV-B fluence used in this experiment simulated a 15% depletion in stratospheric ozone at the equator (0°N). Carbon dioxide exchange, oxygen evolution, and the ratio of variable to maximum fluorescence (Fv/Fm) were determined for fully expanded leaves after 64–76 d of UV-B exposure. AH plants were harvested after 95 d of UV-B exposure, assayed for chlorophyll and UV-B absorbing compounds, and separated into leaves, petioles, stems and roots. Exposure to UV-B radiation had no effect on in situ rates of photosynthesis or dark respiration. No difference in the concentration of UV-B absorbing compounds was observed between treatments. A 2-d daytime diurnal comparison of Fv to Fm ratios indicated a significant decline in Fv/Fm ratios and a subsequent increase in photoinhibition under enhanced UV-B radiation if temperature or PPF exceeded 35°C or 1800μmol m?2 s?1, respectively. However, UV-B effects on fluorescence kinetics appeared to be temporal since maximal photosynthetic rates as determined by oxygen evolution at saturated CO2 and PPF remained unchanged. Although total biomass was unaltered with UV-B exposure, alterations in the growth characteristics of cassava grown with supplemental UV-B radiation are consistent with auxin destruction and reduced apical dominance. Changes in growth included an alteration of biomass partitioning with a significant increase in shoot/root ratio noted for plants receiving supplemental UV-B radiation. The increase in shoot/root ratio was due primarily to a significant decrease in root weight (–32%) with UV-B exposure. Because root production determines the harvest-able portion of cassava, UV-B radiation may still influence the yield of an important tropical agronomic species, even though photosynthesis and total dry biomass may not be directly affected.  相似文献   

3.
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280–315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m−2 d−1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m−2 d−1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (C i) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (P N) and maximum photosynthetic rate (P max) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (Fo), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites.  相似文献   

4.
UV-B radiation inhibits hypocotyl elongation in etiolated tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings acting through a photoreceptor system with peak apparent effectiveness around 300 nm. In order lo further characterize the response and gain insight into its potential ecological significance, the time-course of inhibition was measured and compared with the time-course of flavonoid accumulation in the same seedlings. When a background of strong (> 620 μmol m?2 s?1) white light (WL) was supplemented with low irradiance UV-B (~ 3 μmol m?2 s?1). substantial (~ 50%) inhibition of elongation occurred within 3 h of the light treatment. The magnitude of UV-B-induced elongation inhibition was similar in wild type (WT) and au-mutant seedlings, in spite of the large differences between genotypes in rate and temporal pattern of elongation. In comparison to the effect of UV-B on elongation, induction of flavonoid accumulation in WT and au seedlings undergoing de-etiolation was a much slower response. Several UV-absorbing compounds appeared to be specifically induced by light, and some of them accumulated faster under the WL + UV-B treatment than under WL alone. However, there was little or no delectable effect of WL on flavonoid levels until up to 3 h of treatment, and the specific UV-B effect was measurable only after 6 h of continuous treatment. Indeed. UV-B-screening properties of crude alcoholic extracts were not different between WL and WL + UV-B treatments until after 9 or 24 h. When the light treatments were applied to seedlings that were just breaking through the soil surface. UV-B was found to consistently retard seedling emergence. These results suggest that the rapid inhibition of elongation in de-etiolating seedlings is an evolved response lo UV-B, which may serve to minimize seedling exposure to sunlight until protective pigmentation responses (triggered by WL and UV-B) have taken place in the seedlings epidermis.  相似文献   

5.
The possible interaction of two stresses, UV-B radiation and cadmium, applied simultaneously, was investigated in Brassica napus L. cv. Paroll with respect of chlorophyll fluorescence, growth and uptake of selected elements. Plants were grown in nutrient solution containing CdCl2, (0, 0.5, 2 or 5 M) and irradiated with photosynthetically active radiation (PAR, 400-700 nm, 800 mol m-2 s-1) with or without supplemental ultraviolet-B radiation (UV-B, 280-320 nm, 15 kJ m-2 d-1, weighted irradiance). After 14 d of treatment, the most pronounced effects were found at 2 and 5 M CdCl2 with and without supplemental UV-B radiation. Exposure to cadmium significantly increased the amount of Cd in both roots and shoots. In addition, increases occurred in the concentrations of Fe, Zn, Cu, and P in roots, while K was reduced. In shoots the S content rose significantly both in the presence and absence of UV-B radiation, while significant increases in Mg, Ca, P, Cu, and K occurred only in plants exposed to Cd and UV-B radiation. Manganese decreased significantly under the combined exposure treatment. The rise in S content may have been due to stimulated glutathione and phytochelatin synthesis. Cadmium exposure significantly decreased root dry weight, leaf area, total chlorophyll content, carotenoid content, and the photochemical quantum yield of photosynthesis. As an estimation of energy dissipation processes in photosynthesis, non-photochemical quenching (qNPQ) was measured using a pulse amplitude modulated fluorometer. The qNPQ increased with increasing Cd, while the combination of cadmium and UV-B reduced the qNPQ compared to that in plants exposed only to cadmium or UV-B radiation. The chlorophyll a:b ratio showed a reduction with UV-B at no or low Cd concentrations (0 M, 0.5 M CdCl2), but not at the higher Cd concentrations used (2 M, 5 M CdCl2). Thus in some instances there appeared to be a UV-B and Cd interaction, while in other plants response could be attributed to either treatment alone.Keywords: Brassica napus, cadmium, ultraviolet-B radiation.   相似文献   

6.
Abies faxoniana is a key species in reforestation processes in the southeast of the Qinghai-Tibetan Plateau of China. The changes in growth, photosynthesis and nutrient status of A. faxoniana seedlings exposed to enhanced ultraviolet-B (UV-B), nitrogen supply and their combination were investigated. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2). The results indicated that: (1) enhanced UV-B significantly caused a marked decline in growth parameters, net photosynthetic rate (Pn), photosynthetic pigments and F v/F m, (2) supplemental nitrogen supply increased the accumulation of total biomass, Pn, photosynthetic pigments and F v/F m under ambient UV-B, whereas supplemental nitrogen supply reduced Pn, and not affect biomass under enhanced UV-B, (3) enhanced UV-B or nitrogen supply changed the concentration of nutrient elements of various organs.  相似文献   

7.
Due to anthropogenic influences, solar UV-B irradiance at the earth’s surface is increasing. To determine the effects of enhanced UV-B radiation on photosynthetic characteristics of Prunus dulcis, two-year-old seedlings of the species were submitted to four levels of UV-B stress, namely 0 (UV-Bc), 4.42 (UV-B1), 7.32 (UV-B2) and 9.36 (UV-B3) kJ m−2 d−1. Effects of UV-B stress on a range of chlorophyll (Chl) fluorescence parameters (FPs), Chl contents and photosynthetic gas-exchange parameters were investigated. UV-B stress promoted an increase in minimal fluorescence of dark-adapted state (F0) and F0/Fm, and a decrease in variable fluorescence (Fv, Fv/Fm, Fv/F0 and F0/Fm) due to its adverse effects on photosystem II (PSII) activity. No significant change was observed for maximal fluorescence of dark-adapted state (Fm). Enhanced UV-B radiation caused a significant inhibition of net photosynthetic rate (P N) at UV-B2 and UV-B3 levels and this was accompanied by a reduction in stomatal conductance (g s) and transpiration rate (E). The contents of Chl a, b, and total Chl content (a+b) were also significantly reduced at increased UV-B stress. In general, adverse UV-B effects became significant at the highest tested radiation dose 9.36 kJ m−2 d−1. The most sensitive indicators for UV-B stress were Fv/F0, Chl a content and P N. Significant P<0.05 alteration in these parameters was found indicating the drastic effect of UV-B radiation on P. dulcis.  相似文献   

8.
Norway spruce (Picea abies (L.)Karst.) from seven seed sources was grown in a greenhouse with 8.3 and 14.7 kJ·m−2·d−1 m UV-BBE (biologically effective UV-B: 280–320 nm) irradiation, and with no supplemental irradiation as control. The seedlings total biomass (dry weight) and shoot growth decreased with high UV-B treatment but spruce from low elevation seed sources were more affected. The seedlings grown at the highest UV-B irradiance (14.7 kJ·m−2·d−1) showed from 5 to 38% inhibition of total biomass and 15 to 70 % shoot growth inhibition. Norway spruce populations from higher altitude seed sources manifested greater tolerance to UV-B radiation compared to plants from low altitudes. Changes in phospholipids and protective pigments were also determined. The plants grown at the lower UV-B irradiance (8.3 kJ·m−2·d−1) showed greater ability to concentrations UV-B-absorbing pigments then control plants. Chlorophyll a fluorescence parameter Rfd, (Rfd=(Fm-Fs)/Fs) showed a significant decrease in needles of UV-B treated plants and this correlated with the altitude of seed source. Exposure to UV-B affect levels of the ratio of variable to maximum fluorescence (Fv/Fm). Results from this study suggest that the response to increased levels of UV-B radiation is depended upon the ecotypic differentiation of Norway spruce and involved changes in metabolites in plant tissues.  相似文献   

9.
The kinetics and other characteristics of nitrate reductase (NR, EC 1.6.6.1) in cowpea [Vigna unguiculata (L.) Walp.] seedlings irradiated with biologically effective UV-B radiation (280-320 nm, 3.2 W m-2 s-1) were recorded. The in vivo and in vitro NR activities were inhibited by 34 and 41 % under UV-B treatment, respectively. Both Vmax and Km for the substrate were enhanced by UV-B radiation. The Km for nitrate increased from 1.2 to 1.7 mM after the UV-B irradiation. The change in Km for NADH was from 0.12 to 0.17 mM. The increases in Km indicate that UV-B radiation seriously changes the topology of NR, particularly with respect to the nitrate and NADH binding sites. The rate of NR turnover indicates the extent of damage inflicted by UV-B radiation on the nitrate metabolism. The half-life (t1/2) of NR was reduced from 7 to 4 h in the UV-B treated seedlings. UV-B also inhibited the kinetics of nitrate uptake by plants: its Km increased from 0.08 to 0.12 mM. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Pattanaik B  Roleda MY  Schumann R  Karsten U 《Planta》2008,227(4):907-916
Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12–15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 μmol photon m−2 s−1) = P; PAR + UV-A (8 W m−2) = PA; PAR + UV-A + UV-B (0.4 W m−2) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F v/F m) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F v/F m during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F v/F m sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.  相似文献   

11.
Arabidopsis thaliana . Three-week-old plants were exposed to a high temperature (30 C), an enhanced light intensity (200 μE/m2/sec), water deficiency (water deprivation for 2 days), a chilling temperature (5 C), or ultraviolet-B (UV-B) radiation (0.25 or 0.094 W/m2) for 1 week (except for water deficiency). The high temperature and enhanced light treatments increased only dehydroascorbate reductase (DHAR) activity. Water deficiency enhanced the activities of DHAR and guaiacol peroxidase (PER). Chilling temperature increased the activities of ascorbate peroxidase (APX) and glutathione reductase (GR), whereas it decreased catalase (CAT) activity. UV-B at an intensity of 0.25 W/m2 elevated the activities of APX, monodehydroascorbate reductase (MDHAR), GR, PER and superoxide dismutase (SOD). It was suggested that the amounts of phenylpropanoid compounds increased during treatments of plants with enhanced light intensity, chilling temperature, and UV-B. These results suggest that some differences exist among the oxidative stress conditions caused by the different treatments, although all of these treatments seem to be related to active oxygen production. We propose that in A. thaliana, environmental stresses may be classified into those which induce DHAR activity and those which induce APX activity. Received 11 January 1999/ Accepted in revised form 22 April 1999  相似文献   

12.
The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (Fv/Fm), the apparent photon yield for oxygen evolution (φl) and the photosynthetic capacity at 5% CO2 (Pm). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in Fv/Fm, φi, and Pm. as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought.  相似文献   

13.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

14.
Cell and chloroplast structural changes in palisade cells from mature leaves of Brassica napus L. cv. Paroll were quantified following exposure of plants to enhanced ultraviolet-B (280–320 nm; 13 kJ m?2 day?1 biologically effective UV-B) radiation at two different levels of photosynthetically active radiation (PAR, 400–700 nm; 200 and 700 μmol m?2 s?1). Short-term changes in leaf ultrastructure after 30 min and longer term changes after one day and one week were analyzed using stereological techniques incorporating light and electron microscopy and mathematical reconstruction of a mean cell for each sample. Ultraviolet-B together with either relatively high or low PAR resulted in cell structural changes resembling those typical of plants under shade conditions, with the most marked response occurring after 30 min of UV-B radiation. The ultrastructural changes at the cellular level were generally similar in both the relatively high and low PAR plus UV-B radiation treatments. The surface areas of all three thylakoid types, the appressed, non-appressed and margin thylakoids increased in the palisade tissue under supplemental UV-B irradiation. Although the appressed and non-appressed thylakoids increased in surface area, they did not increase equally, leaving open the possibility that the two thylakoid types have independent regulatory systems or different sensitivity to UV-B radiation. Increased thylakoid packing (mm2 thylakoid membrane per mm2 leaf surface) in UV-B-exposed plants may increase the statistical probability of photon interception. An increased level of UV-absorbing pigments after one week of supplemental UV-B radiation did not prevent or significantly ameliorate UV effects. Our data supported the assumption that UV-B radiation may have a regulatory role besides damaging effects and that an increased UV-B environment will likely increase this regulatory influence of UV-B radiation.  相似文献   

15.
Effects of two intensities (1 and 5 W?m?2) of UV-B radiation on the synthesis of UV-absorbing compounds in a terrestrial cyanobacterium Nostoc flagelliforme were investigated. UV-B radiation resulted in lower biomass. Short period (less than 12 h) of UV-B radiation caused an increase of chlorophyll a content, but subsequent duration of treatment (more than 24 h) resulted in a rapid decrease. N. flagelliforme synthesized UV-absorbing compounds such as scytonemin and mycosporine-like amino acids (MAAs) in response to UV-B radiation. Upon 48 h of exposure to UV-B radiation, scytonemin content in cells increased by 103.8 and 164.0 % at 1 and 5 W?m?2, respectively. Oligosaccharide-linked mycosporine-like amino acids increased by 145.5 % after 12 h at 5 W?m?2 and 114.5 % after 48 h at 1 W?m?2 UV-B radiation. HPLC analysis showed that nine MAAs existed in N. flagelliforme cells both from liquid suspension culture and field colony. But the concentration and kinds of them were different. At the two distinct levels of UV-B radiation, the content of particular MAAs increased, declined, or remained unchanged. Moreover, the appearance of two new MAAs was observed.  相似文献   

16.
Cotyledons excised from dark-grown seedlings of cucumber (Cucumis sativus L.) were cultured in vitro under UV radiation at different wavelengths, obtained by passage of light through cut-off filters with different transmittance properties. Growth and the synthesis of chlorophyll (Chl) in cotyledons were inhibited and malondialdehyde was accumulated upon irradiation at wavelengths below 320 nm. Exogenous application of scavengers of free radicals reversed the growth inhibition induced by UV-B. Measurement of the fluorescence of Chl a suggested that electron transfer in photosystems was affected by UV-B irradiation. On the basis of these results, the involvement is postulated of active species of oxygen in damages to thylakoid membranes and the growth inhibition that are induced by UV-B irradiation.Abbreviations Chl chlorophyll - Fm maximal fluorescence (dark) - Fm maximal fluorescence (light) - Fv variable fluorescence (dark) - Fv variable fluorescence (light) - MDA malondialdehyde - O2 Superoxide radical - PS photosystem - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence - UV-BBE biologically effective UV-B radiation - WL(T = 0.5) wavelength at which 50% transmittance occurs  相似文献   

17.
The influence of UV-B radiation from filtered or unfiltered fluorescent sunlamps on early seedling growth and translocation of 65Zn from cotyledons to the shoot was examined in two cultivars of cotton, Acala and Gregg. Ten-day-old seedlings which had been irradiated in the greenhouse for 6 h continuously each day for 14 days with 0.81 or 1.61 W × m-2 UV-B radiation under two unfiltered FS-40 sunlamps, showed pronounced phytotoxic damage. This was characterized at first by bronzing and glazing of the cotyledons and later by upward curling of the leaves and abscission. Leaf expansion, dry matter accumulation, and mobilization of 65Zn from the cotyledons was severely impaired in the young developing shoot under unfiltered UV-B radiation. A significant stress response also was observed in seedlings exposed to 0.61 W × m-2 UV-B radiation through a polystyrene filter and 0.73 W × m-2 UV-B radiation through a cellulose-acetate filter. This stress response was characterized by the formation of a red pigment in the petioles of the cotyledons, reduced leaf expansion, and reduced transport of 65Zn. Control seedlings exposed to 0.03 W × m-2 UV-B radiation through a mylar filter were green, had maximum leaf size and dry-matter accumulation, and had the greatest percentage of 65Zn translocated from the cotyledons.  相似文献   

18.
To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m-2 day-1 plant-weighted UV-B against a background of 850–950 μmol m-2 s-1 photosynthetically active radiation. In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m-2 day-1 UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5–30%, plant dry weight by 12–30%, and plant height by 24–38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B.  相似文献   

19.
Clones 02 and 4430 of Tradescantia were tested in field, greenhouse and controlled environment chambers as monitors for the potentially hazardous UV-B irradiation increase that could result from stratospheric ozone decrease. In addition to about 16 hr of solar emissions at about 2100 micro-einsteins·m−2·s−1 (400–700 nm) and 15 hr at about 1800 micro-einsteins·m−2·s−1 in the field and greenhouse, respectively, plants were given 7 hr of supplemental UV-B irradiation per day for 27 days. After the first 7 days of UV-B irradiation exposure, cumulative data were recorded for 20 days. Cuttings of Tradescantia plants in controlled-environment, exposed to 16 hr of simulated solar emission of about 800 micro-einsteins·m−2·s−1 (400–700 nm), were also exposed to 10 hr of supplemental UV-B irradiation per day for 1 or 2 days. All plants were checked for somatic aberrations (color changes in the flower petals and stamen hairs), number of hairs per stamen, and cells per hair. Pollen germination and pollen tube growth were noted after a 90-min UV-B irradiation period.Somatic aberrations occurred infrequently in the petals and were judged unreliable criteria for use in monitoring enhanced UV-B irradiation environments. The number of aberrant events within stamen hairs, however, was significantly increased by the UV-B irradiation treatments. while pollen germination and pollen tube growth were significantly reduced. These data indicate that color changes in stamen hairs and pollen viability are useful criteria for monitoring UV-B irradiation changes.  相似文献   

20.
UV-B (0.4 W m–2) irradiation and cadmium (2 and 8 M) treatments separately inhibited the survival, growth, pigment content, and photosynthetic electron transport in Plectonema boryanum. Phycocyanin was the main target to UV-B and Cd and it was followed by chlorophyll a and carotenoids. UV-B and Cd caused strong inhibition on activities of photosystem 2 (PS2) and the whole electron transport chain, whereas photosystem 1 (PS1) was the least affected. UV-B and Cd treatment accelerated respiration, lipid peroxidation, and the activities of superoxide dismutase and catalase. However, enhancement in catalase activity was considerably less (5 – 50 %) as compared to SOD activity. As compared to individual treatment, the effect of their combination (UV-B + Cd) was more detrimental to the above parameters. A synergistic interaction of UV-B and Cd is probably due to increased cadmium uptake as a result of increased membrane permeability caused by lipid peroxidation in P. boryanum after UV-B exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号