首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
1. [4-13C]Nicotinate was synthesised and used to support the growth of a nicotinate auxotrophic mutant of Pseudomonas putida. 13C-NMR spectroscopy of the isolated urocanase confirmed the efficient incorporation of 13C into C4 of the nicotinamide ring of the tightly bound NAD+ cofactor. 2. beta-[( 2'-13C]Imidazol-4-yl)propionate was synthesised according to known procedures and used for inhibition of the 13C-labelled urocanase. An increase in the absorbance at 330 nm indicated adduct formation between enzyme-bound NAD+ and inhibitor. The adduct was stabilised by oxidation with phenazine methosulfate and isolated using a slight modification of the procedure of Matherly et al. [Matherly, L. H., DeBrosse, C. W. & Phillips, A. T. (1982) Biochemistry 21, 2789-2794]. 3. The 13C-NMR spectrum of the doubly labelled adduct, [4-13C]NAD-[2'-13C]imidazolylpropionate, showed no one-bond 13C-13C coupling between labelled sites. The 1H-NMR spectrum of this adduct in 2H2O showed only one imidazole signal, which appeared as a doublet (1JC-H = 212 Hz), confirming the presence of a proton at the labelled C2'. The lack of a C5' signal and further NMR data provide evidence for a C-C bond between C4 of the nicotinamide and C5' of the imidazole ring. 4. The revised structure for the enzymatically formed addition complex suggests a novel mechanism for the urocanase reaction which is not only chemically plausible but also explains the previously observed urocanase-catalysed exchange of the C5 proton of urocanate and of beta-(imidazol-4-yl)propionate.  相似文献   

2.
A synthesis is reported of 3beta-hydroxy-5alpha-pregnan-20-one sulphate and the disulphate and 3-monosulphate of 5alpha-pregnane-3beta,20alpha-diol, labelled specifically with deuterium in high isotopic purity for metabolic studies in humans. Base-catalyzed equilibration of 3beta-hydroxy-5alpha-25R-spirostan-12-one (hemcogenin, II) with deuterium oxide, followed by removal of the 12-keto group and degradation of the sapogenin side-chain afforded 3beta-hydroxy-5alpha-[11,11-2H2]pregn-16-en-20-one (VII). Further deuterium atoms were introduced at the 3alpha and 20beta positions by reductions with sodium borodeuteride and lithium aluminum deuteride, respectively. These reactions led to 3beta-hydroxy-5alpha-[3alpha,11,11-2H3]pregnan-20-one (X; isotopic purity 87.2%) and 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol (XIV; isotopic purity 83.9%). The 3-sulphate of the pregnanolone and the 3,20-disulphate of the pregnanediol were prepared directly form the free alcohols, while the 3-monosulphate of the pregnanediol was obtained via 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol 20-acetate (XVII).  相似文献   

3.
The tightly bound NAD+ in urocanase forms a covalent adduct with the inhibitor imidazole propionate and most likely also with the substrate urocanate. Subsequent tautomerizations and cleavage of the adduct lead eventually to the product, 5-hydroxyimidazole propionate. The possibility that the H4 atom of the nicotinamide moiety undergoes a 1,5 sigmatropic H-shift in one of the intermediates has been investigated by deuterium labeling. No incorporation of solvent deuterium into position 4 of the nicotinamide moiety could be detected, which rules out a 1,5-sigmatropic shift of the H4 atom.  相似文献   

4.
Furuta T  Namekawa T  Shibasaki H  Kasuya Y 《Steroids》1999,64(12):805-811
A method is described for the preparation of multi-labeled tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5beta-[1, 2,3,4,5-2H5]pregnan-20-one, THF-d5), allo-tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5alpha-[1 ,2,3,4,5-2H5]pregnan-20-one, allo-THF-d5), and tetrahydrocortisone (3alpha,17alpha,21-trihydroxy-5beta-[1,2,3,4,5-2H5]pre gnane-11,20-dione, THE-d5) containing five non-exchangeable deuterium atoms in the steroid ring A. Reductive deuteration at C-1, C-2, C-3, C-4, and C-5 of prednisolone or prednisone was performed in CH3COOD with rhodium (5%) on alumina under the deuterium atmosphere. The isotopic purities of the labeled compounds as [2H5]-form were estimated to be 86.17 atom%D for THF-d5, 74.46 atom%D for allo-THF-d5 and 81.90 atom%D for THE-d5, based on the ion intensities in the region of the molecular ion of methoxime-trimethylsilyl (MO-TMS) derivatives measured by GC-MS.  相似文献   

5.
Urocanase from Pseudomonas putida and from beef liver were isolated by modifying described procedures. Both enzymes were inactivated and labeled on treatment with tritiated sodium borohydride and gave, upon subsequent hydrolysis, a radioactive acid. The previously reported identity of this acid as 2-hydroxybutanoic acid was disproved by several criteria. Other hydroxy acids were also proved to be different from the radioactive acid derived from urocanase. A large portion of the radioactive material from P. putida was found to be nicotinic acid by 1H NMR spectroscopy, gas-liquid chromatography of its methyl ester, and co-crystallization with authentic reference compounds both as the acid and as the hydrazide. A significant portion of the radioactive material derived from beef liver urocanase also co-crystallized with nicotinic acid. Sodium borohydride-treated inactive urocanase was partially reactivated by light. The action spectrum of the photoreactivation showed a maximum at 330 nm. Treatment of urocanase with sodium borodeuteride followed by hydrolysis afforded a sample of nicotinic acid which carried deuterium mainly in position 6. Both the reversible reducibility of urocanase and its action spectrum of photoreactivation suggest that urocanase contains an enzyme-bound nicotinamide nucleotide molecule which is essential for enzymic activity.  相似文献   

6.
A Clostridia strain (R-strain) which hydrogenates tiglinate (1b) and alpha-methylcinnamate (1c) in the presence of hydrogenase gas in 2H2O to (2R, 3S)2-methyl-[2,3-2H]butyrate (5b, H = 2H) and (alphaR, betaR)alpha-methyl[alpha,beta-2H]dihydrocinnamate (5c, H = 2H), respectively, was isolated. The configuration at C-3 was determined by 1H-NMR spectroscopy in the presence of Eu(fod)3. The stereochemistry of this hydrogenation is the mirror image of that which has been determined with intact cells of another strain of Clostridium kluyveri (S-strain). In the presence of hydrogen gas, the R-strain hydrogenates crotonate in 2H2O to butyrate with the following deuterium distribution: C-2, 1.85; C-3, 1.35; and C-4, 0.63 deuterium atoms. Crotonate seems to be the substrate of two reductases with sterically different actions. Tiglinate (1b) and alpha-methylcinnamate, however, are hydrogenated only by that reductase which is different from the butyryl-CoA dehydrogenase.  相似文献   

7.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

8.
Nicotinamide adenine dinucleotide (NAD) dependent urocanase (4'-imidazolone-5'-propionate hydro-lyase, EC 4.2.1.49) from Pseudomonas putida was found to catalyze an exchange reaction between solvent and the 4'-hydrogen of urocanate or imidazolepropionate at a rate faster than that of overall deuterium was compared to unlabeled urocanate as a substrate, no isotope rate effect was noted. For examination of the possibility of an NAD+-mediated intramolecular hydride transfer of the 4'-hydrogen to a position on the side chain of oxoimidazolepropionate, the origins of hydrogen at positions 2 and 3 in the propionate chain were studied as a function of reaction time and extent of exchange of the 4'-hydrogen. No transfer of hydrogen from the 4' position to the side chain was observed, thereby eliminating mechanisms requiring hydride transfer via NADH between these positions. Catalytic rates in 1H2O vs. 2H2O revealed a 3-fold difference which was ascribed to a rate-limiting proton addition step. Similarly, a 5-fold decrease in Vmax was found for the reverse reaction when oxoimidazole[2,3-2H2]propionate was compared to unlabeled oxoimidazolepropionate. These data support a mechanism involving water addition across the conjugated double bond system of urocanate, rather than an internal oxidation--reduction process, yet NAD+ is required. A mechanism is proposed which uses electron delocalization in the imidazole nucleus, via an imidazole--NAD adduct, to facilitate water attack and subsequent formation of oxoimidazolepropionate.  相似文献   

9.
L H Matherly  A T Phillips 《Biochemistry》1980,19(25):5814-5818
Incubation of urocanase from Pseudomonas putida with either its substrate, urocanic acid, or product, 4'(5')-imidazolone-5'(4')-propionic acid, resulted in an oxygen-dependent inhibition of enzyme activity. Coincident with the inactivation was the stoichiometric incorporation of radioactivity from [14C]urocanate into the protein. NAD+ which is required for activity or urocanase was not directly involved in the inactivation process. The inactivation of urocanase was irreversible, could be partially blocked by the competitive inhibitor imidazolepropionate, and involved the modification of a single active-site thiol. The inhibition resulted from oxidative decomposition of 4'(5')-imidazolone-5'(4')-propionate but was not due to the formation of the major degradative product, 4-ketoglutaramate, since this compound was not an irreversible inactivator of urocanase although it did produce some inhibition at high concentrations. A mechanism is presented in which a reactive imine intermediate in the decomposition scheme is subject to nucleophilic attack by an active-site thiol, thereby generating a covalent enzyme--thioaminal adduct. These results emphasize the importance of a catalytic center sulfhydryl group for urocanase activity.  相似文献   

10.
Rice glutelins consist of acidic (alpha) and basic (beta) subunits which are further separated into three polypeptide components assigned as alpha-1, alpha-2, and alpha-3 subunit components and beta-1, beta-2 and beta-3 subunit components. Nine rice mutant lines with a decreased amount of the glutelin alpha-2 subunit component (alpha-2L) were obtained by screening about 6,800 potential mutant lines derived from the fertilized egg treatment with N-methyl-N-nitrosourea (MNU) using the SDS-PAGE method. The mutants were classified into three types of the increased alpha-1 subunit (alpha-1H/alpha-2L), the decreased beta-2 subunit (beta-2L/alpha-2L) and the increased alpha-3 subunit (alpha-3H/alpha-2L) represented by EM278, CM1707 and EM659, respectively. Iso-electric focus (IEF) analysis revealed that all of the mutants had an extremely low amount of a polypeptide with a 6.71 pI value, whereas a polypeptide with either a 6.50 pI value or with a 6.90 pI value increased significantly in alpha-1H/alpha-2L mutants or in alpha-3H/alpha-2L mutants, respectively. The beta-2L/alpha-2L mutants had a decreased amount of a basic polypeptide with a 8.74 pI value. Genetic analysis revealed that the three types of mutants were controlled by a single incomplete dominant gene respectively, and the three are alleles. The gene was temporarily named glu4, which was found to be located on chromosome 1 linked with the eg and spl6 genes. Two-dimensional electrophoresis analysis revealed that the glu4 encoded polypeptides of pI 6.71/alpha-2 and pI 8.74/beta-2. Amino acid sequence analysis suggested that the mutated acidic polypeptide was the product of a GluA subfamily gene. Northern and RT-PCR analyses revealed that glu4 corresponded to the GluA-1 gene.  相似文献   

11.
Testosterone 6beta-hydroxylation is a prototypic reaction of cytochrome P450 (P450) 3A4, the major human P450. Biomimetic reactions produced a variety of testosterone oxidation products with 6beta-hydroxylation being only a minor reaction, indicating that P450 3A4 has considerable control over the course of steroid hydroxylation because 6beta-hydroxylation is not dominant in a thermodynamically controlled oxidation of the substrate. Several isotopically labeled testosterone substrates were prepared and used to probe the catalytic mechanism of P450 3A4: (i) 2,2,4,6,6-(2)H(5); (ii) 6,6-(2)H(2); (iii) 6alpha-(2)H; (iv) 6beta-(2)H; and (v) 6beta-(3)H testosterone. Only the 6beta-hydrogen was removed by P450 3A4 and not the 6alpha, indicating that P450 3A4 abstracts hydrogen and rebounds oxygen only at the beta face. Analysis of the rates of hydroxylation of 6beta-(1)H-, 6beta-(2)H-, and 6beta-(3)H-labeled testosterone and application of the Northrop method yielded an apparent intrinsic kinetic deuterium isotope effect ((D)k) of 15. The deuterium isotope effects on k(cat) and k(cat)/K(m) in non-competitive reactions were only 2-3. Some "switching" to other hydroxylations occurred because of 6beta-(2)H substitution. The high (D)k value is consistent with an initial hydrogen atom abstraction reaction. Attenuation of the high (D)k in the non-competitive experiments implies that C-H bond breaking is not a dominant rate-limiting step. Considerable attenuation of a high (D)k value was also seen with a slower P450 3A4 reaction, the O-dealkylation of 7-benzyloxyquinoline. Thus P450 3A4 is an enzyme with regioselective flexibility but also considerable regioselectivity and stereoselectivity in product formation, not necessarily dominated by the ease of C-H bond breaking.  相似文献   

12.
The proton inventory technique   总被引:4,自引:0,他引:4  
The proton inventory technique uses the dependence of enzymic reaction rate on the atom fraction of deuterium present in mixtures of protium oxide and deuterium oxide to deduce for simple cases the number of exchangeable hydrogenic sites that produce isotope effects, and the magnitude of the isotope effect generated at each site. For more complex cases, other information, such as the participation of more than a single step in limiting the rate, may be obtained. The background of the method, the conduct of the experiments and the interpretation of the results are briefly reviewed. The method is then illustrated in its application to various enzyme systems by a series of case histories.  相似文献   

13.
D G Cross 《Biochemistry》1975,14(2):357-362
Time-dependent changes in the ultraviolet absorbance of the adenine chromophore are observed in the stopped-flow spectrophotometer when adenosine and its analogs are rapidly transferred from protium oxide to deuterium oxide. These absorbance changes are shown to result from hydrogen exchange in the exocyclic amino groups of the purine ribonucleosides by using derivatives of adenosine in which methyl groups replace exchangeable hydrogens and by showing that the general characteristics of hydrogen exchange in adenosine analogs agree with those found here. A study of the dependence of hydrogen-exchange rate constants on adenosine, AMP, and phosphate concentration showed there is a second-order dependence on AMP concentration which is primarily due to intermolecular catalysis by the phosphate group of the nucleotide. The deuterium oxide perturbation difference spectrum, obtained at equilibrium, was found to contain two components that result from blue shifts of the adenine chromophore absorbance: (1) a shift cause by the substitution of deuterium for protium in the ring (N1) nitrogen and exocyclic nitrogens, and (2) a shift associated with a change in the polarizability of the medium. Since the theory of solvent perturbation, which is used to measure the relative "exposure" of chromophores in macromolecules, assumes that the spectral shifts observed are solely due to (2) above, the use of deuterium oxide as a measure of chromophore exposure to perturbants the size of water must be reexamined.  相似文献   

14.
The cytotoxic action of the excitatory amino acids (EAAs) glutamate, N-methyl- D-aspartate (NMDA), quisqualate (QA), kainate (KA) and (RS)-2-amino-3(3-hydoxy-5-methylisoxazol-4-yl) propionate (AMPA) was studied in cerebral cortical neurons in culture. The pharmacological profile of these actions was characterized using the NMDA selective antagonist D-(-)-2-amino-5- phosphonopentanoate (APV) and the non-NMDA selective antagonists 6.7- dinitroquinoxaline-2,3-dione (DNQX), 2-amino-3[3-(carboxymethoxy)-5- methylisoxazol-4-yl]-propionate (AMOA) and 2-amino-3-[2-(3-hydroxy-5- methylisoxazol-4-yl)methyl-3-methyl-3-oxoisoxazolin-4-yl] propionate (AMNH). The role of intracellular Ca++ homeostasis and cGMP production for development of EAA mediated cytotoxicity was assessed by measurements of changes in [Ca++]i using the flourescent Ca++ chelator Fluo-3 and in cGMP concentrations using a conventional radioimmune assay. It was found that glutamate toxicity involves both NMDA and non-NMDA receptor activation and that aberrations in Ca++ homeostasis brought about by Ca++ influx and/or liberation of Ca++ from internal stores aare important for development of toxicity. The drug dantrolene which prevents release of Ca++ from such stores can prevent toxicity induced by glutamate, NMDA and QA completely but has no effect on KA and AMPA toxicity. Changes in cGMP levels appear to play a role for development of glutamate, NMDA and KA toxicity but does not seem to be involved in that triggered by QA and AMPA.Abbreviations AMNH: (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate) - AMOA: (2-amino-3[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propinate) - AMPA: ( (RS) —2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinate) - APV: (D-(-)-2-amino-5-phosphonopentanoate) - DNQX: (6,7-dinitroquinoxaline-2,3-dione) - KA (kinate) - QA (quisqualate)  相似文献   

15.
Twenty 3,5-disubstituted isoxazoles have been synthesized and tested against fourth instar Aedes aegypti larvae. In the synthesis of title compounds, modifications have been made in the C-5 side-chain with a view to test their larvicidal activity. These isoxazoles have been obtained by 1,3-dipolar cycloaddition of arylnitrile oxides to terminal alkynes which furnished the desired products in 20% to 79% yields. A comparative study of the larvicidal activity between 3-(3-aryl-isoxazol-5-yl)-propan-1-ols and 3-(3-aryl-isoxazol-5-yl)-propionic acids clearly demonstrated that the latter compounds possess much better larvicidal activity than the former. We also tested two esters, viz., methyl 3-[3-(phenyl)-isoxazole-5-yl] propionate and methyl 3-[3-(4-chlorophenyl)-isoxazole-5-yl] propionate, where the latter presented an excellent larvicidal profile.  相似文献   

16.
When (methyl-2H3)methylmalonyl-CoA was reacted with partially purified methylmalonyl-CoA mutase, 1H-NMR revealed that about 24% of the migrating deuterium was lost after 88% conversion. When [methyl-3H]methylmalonyl-CoA was incubated with highly purified methylmalonyl-CoA mutase, tritium exchange with the medium depended on added methylmalonyl-CoA epimerase. With highly purified preparations of methylmalonyl-CoA mutase, effective tritium exchange from [5'-3H]adenosylcobalamin to water required the addition of methylmalonyl-CoA epimerase and of substrate (e.g. succinyl-CoA). By addition of [14C]succinyl-CoA to a partially purified preparation of methylmalonyl-CoA mutase, it was shown that the mutase binds one substrate molecule very tightly. Coupling the mutase reaction with the transcarboxylase reaction and using variously labelled succinyl-CoA as substrate, revealed that only (2R)- and not (2S)-methylmalonyl-CoA will be formed by the mutase with a kinetic isotope effect of 3.5 using (2H4)succinyl-CoA. When (1-13C) propionyl-CoA was reacted with a mixture of highly purified methylmalonyl-CoA carboxylase, epimerase and mutase, 13C-NMR signals were obtained for the thioester carbonyl of succinyl-CoA (relative intensity 100%) and of methylmalonyl-CoA (5%) as well as for the carboxyl of free succinic acid (27%) and of succinyl-CoA (less than 4.5%). Thus very little, if any, migration of the CoA from one carboxyl to the other appears to take place. (1,4-13C2)Succinic acid and (1,4-13C2)succinyl-CoA were synthesised and their 13C-NMR chemical shifts were exactly determined. Evidence is provided for a strict stereospecificity of the mutase toward the (2R)-epimer of methylmalonyl-CoA and for an incomplete stereospecificity toward the two diastereotopic 3-H atoms of succinyl-CoA. The latter, combined with a high intramolecular isotope discrimination, causes rapid washing-out of the migrating 2H and 3H to water and slow washing-in from the medium. Whenever migration of protium from the sterically less preferred 3-pro(S)- position of succinyl-CoA occurs and simultaneously a heavy isotope is maneuvered from the migratable 3-pro(R)- position into the labile alpha-position of methylmalonyl-CoA, the substitution by the COSCoA group takes place with inversion of configuration. When the sterically preferred 3-pro(R)-hydrogen atom migrates, the previously reported stereochemical retention occurs. A mechanistic and stereochemical scheme is discussed that fully accounts for all observations.  相似文献   

17.
The synthesis of novel 4beta-aryl-1-methyl-3alpha-(3-substituted-1,2,4-oxadiazol-5-yl)piperidines, bioisosteres of ester (+)-1, is described. The synthesized oxadiazoles were evaluated for their affinity to the DAT and their ability to inhibit monoamine reuptake at the DAT, NET, and 5HTT. The results show that affinity to the DAT and ability to inhibit the reuptake at the DAT, NET, and 5HTT is a function of the size of the substituent in the oxadiazole ring. (+)-(3R,4S)-4beta-(4-Chlorophenyl)-1-methyl-3alpha-(3-methyl-1,2,4-oxadiazol-5-yl)piperidine [(+)-2a], which is structurally and pharmacologically most similar to the ester (+)-1 in this series, showed at least a 2-fold longer duration of action when compared to ester (+)-1.  相似文献   

18.
Tunicamycin is a reversible inhibitor of polyprenol-phosphate: N-acetylhexosamine-1-phosphate translocases and is produced by several Streptomyces species. We have examined tunicamycin biosynthesis, an important but poorly characterized biosynthetic pathway. Biosynthetic precursors have been identified by incorporating radioactive and stable isotopes, and by determining the labeling pattern using electrospray ionization-collision induced dissociation-mass spectrometry (ESI-CID-MS), and proton, deuterium, and C-13 nuclear magnetic resonance (NMR) spectroscopy. Preparation and analysis of [uracil-5-(2)H]-labeled tunicamycin established the complete ESI-CID-MS fragmentation pathway for the major components of the tunicamycin complex. Competitive metabolic experiments indicate that 7 deuteriums incorporate into tunicamycin from [6,6'-(2)H,(2)H]-labeled D-glucose, 6 of which arise from D-GlcNAc and 1 from uridine and/or D-ribose. Inverse correlation NMR experiments (heteronuclear single-quantum coherence (HSQC)) of (13)C-labeled tunicamycin enriched from D-[1-(13)C]glucose suggest that the unique tunicamine 11-carbon dialdose sugar backbone arises from a 5-carbon furanose precursor derived from uridine and a 6-carbon N-acetylamino-pyranose precursor derived from UDP-D-N-acetylglucosamine. The equivalent incorporation of (13)C into both the alpha-1" and beta-11' anomeric carbons of tunicamycin supports a direct biosynthesis via 6-carbon metabolism. It also indicates that the tunicamine motif and the alpha-1"-linked GlcNAc residue are both derived from the same metabolic pool of UDP-GlcNAc, without significant differential metabolic processing. A biosynthetic pathway is therefore proposed for tunicamycin for the first time: an initial formation of the 11-carbon tunicamine sugar motif from uridine and UDP-GlcNAc via uridine-5'-aldehyde and UDP-4-keto-6-ene-N-acetylhexosamine, respectively, and subsequent formation of the anomeric-to-anomeric alpha, beta-1",11'-glycosidic bond.  相似文献   

19.
beta-Phenylethylamine (PE) hydrochloride injected intraperitoneally into rats was distributed evenly throughout the various regions of rat brain. Similarly, when a mixture of PE and alpha, alpha, beta, beta-deuterated PE [( 2H4]PE) was injected, no regional differences were observed in the ratios of the amounts of [2H4]PE and PE present; however, significantly more [2H4]PE than PE was present, although a 1:1 mixture had been administered. Further experiments in which the amounts of [2H4]PE and PE in whole rat brain, liver, and plasma were quantified confirmed this finding. The maximum [2H4]PE-to-PE ratios observed were 67 in whole brain 1 h after injection and 8 in liver and in plasma 45 min after injection. The whole brain [2H4]PE-to-PE ratios were decreased by pargyline pretreatment. Subsequent experiments showed that more alpha, alpha-[2H2]PE than PE was present in whole brain, liver, and plasma of rats injected with an equimolar mixture of alpha, alpha-[2H2]PE and PE. In contrast, beta, beta-[2H2]PE was not enriched in comparison to PE under the same experimental conditions. We concluded that the basis for the enrichment of [2H4]PE and alpha, alpha-[2H2]PE compared to PE was due to protection of the deuterated analogs from the actions of monoamine oxidase and perhaps aldehyde dehydrogenase; this protection led to pronounced deuterium substitution effects in vivo especially in the brain.  相似文献   

20.
A pectic polysaccharide named silenan, [alpha]D20 +148.6 degrees (c 0.1; H2O), was isolated earlier from the aerial part of campion, Silene vulgaris (Moench) Garcke. Silenan has been shown to contain homogalacturonan segments as "smooth regions" and rhamnogalacturonan fragments as "hairy regions". The present study reveals a generalization of structural features of silenan. Silenan was subjected to enzymic digestion with pectinase, to Smith degradation, and to lithium-degradation to determine the conforming poly- and oligosaccharide fragments of "hairy regions" of silenan. The NMR-spectral data and mass-spectrometry confirmed that the core of the ramified region of silenan consisted of residues of alpha-rhamnopyranose 2-O-glycosylated with the residues of alpha-1,4-D-galactopyranosyl uronic acid. The part of the alpha-rhamnopyranose residues of the backbone are branched at O-4. On the basis of the data, the hairy regions of silenan proved to contain mainly linear chains of beta-1,3-, beta-1,4-, and beta-1,6-galactopyranan and alpha-1,5-arabinofuranan. The side chains of the ramified region were shown to have branching points represented 2,3-, 3,6-, 4,6-di-O-substituted beta-galactopyranose residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号