首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postnatal development of ventilatory reflexes originating from bronchopulmonary receptors was assessed in preterm vs. full-term lambs. Ventilation and arterial pressure were repeatedly measured in 10 preterm (gestational age, 132 days) and 7 full-term lambs without sedation from day 1 to day 42. The Hering-Breuer inhibitory reflex (slowly adapting stretch receptors) was assessed by the increase in expiratory time during end-inspiratory occlusion. The pulmonary chemoreflex (C-fiber endings) was assessed by the initial apnea + bradycardia + systemic hypotension and the secondary tachypnea after capsaicin intravenous injection. Results show the following. 1) Premature birth did not modify the maturation of the Hering-Breuer reflex. 2) Whereas a classic pulmonary chemoreflex was observed in the very first hours of life in preterm lambs, the tachypneic component of this reflex was weaker than in full-term lambs on day 1. 3) Premature birth led to a reversed postnatal maturation of this tachypneic response (tendency to increase with postnatal age). Our findings suggest that premature birth in lambs modifies postnatal maturation of the pulmonary chemoreflex.  相似文献   

2.
Here we review the influence of bronchopulmonary receptors (slowly and rapidly adapting pulmonary stretch receptors, and pulmonary/bronchial C-fiber receptors) on respiratory-related motor output to upper airway muscles acting on the larynx, tongue, and hyoid arch. Review of the literature shows that all muscles in all three regions are profoundly inhibited by lung inflation, which excites slowly adapting pulmonary stretch receptors. This widespread coactivation includes the recruitment of muscles that have opposing mechanical actions, suggesting that the stiffness of upper airway muscles is highly regulated. A profound lack of information on the modulation of upper airway muscles by rapidly adapting receptors and bronchopulmonary C-fiber receptors prohibits formulation of a conclusive opinion as to their actions and underscores an urgent need for new studies in this area. The preponderance of the data support the view that discharge arising in slowly adapting pulmonary stretch receptors plays an important role in the initiation of the widespread and highly coordinated recruitment of laryngeal, tongue, and hyoid muscles during airway obstruction.  相似文献   

3.
We examined the contribution of afferent vagal A- and C-fibers on abdominal expiratory muscle activity (EMA). In seven spontaneously breathing supine dogs anesthetized with alpha-chloralose we recorded the electromyogram of the external oblique muscle at various vagal temperatures before and after the induction of a pneumothorax. When myelinated fibers were blocked selectively by cooling the vagus nerves to 7 degrees C, EMA decreased to 40% of control (EMA at 39 degrees C). With further cooling to 0 degrees C, removing afferent vagal C-fiber activity, EMA returned to 72% of control. On rewarming the vagus nerves to 39 degrees C, we then induced a pneumothorax (27 ml/kg) that eliminated the EMA in all the dogs studied. Cooling the vagus nerves to 7 degrees C, during the pneumothorax, produced a slight though not significant increase in EMA. However, further cooling of the vagus nerves to 0 degrees C caused the EMA to return vigorously to 116% of control. In three dogs, intravenous infusion of a constant incrementally increasing dose of capsaicin, a C-fiber stimulant, decreased EMA in proportion to the dose delivered. These results suggest that EMA is modulated by a balance between excitatory vagal A-fiber activity, most likely from slowly adapting pulmonary stretch receptors, and inhibitory C-fiber activity, most likely from lung C-fibers.  相似文献   

4.
Lai CJ  Ho CY  Kou YR 《Life sciences》2002,70(18):2125-2138
Although endotoxin is known to induce various pulmonary responses that are linked to the function of lung vagal sensory receptors, its effects on these pulmonary receptors are still not clear. This study investigated the effects of circulatory endotoxin on the afferent activity of lung vagal sensory receptors in rats. We recorded afferent activity arising from vagal pulmonary C fibers (CFs), rapidly adapting receptors (RARs), tonic pulmonary stretch receptors (T-PSRs), and phasic pulmonary stretch receptors (P-PSRs) in 64 anesthetized, paralyzed, and artificially ventilated rats. Intravenous injection of endotoxin (50 mg/kg; lipopolysaccharide) stimulated 7 of the 8 CFs, 8 of the 8 RARs, and 4 of the 8 T-PSRs studied, while having no effect on the 8 P-PSRs tested. The stimulation started 3-16 min after endotoxin injection and lasted until the end of the 90-min observation period. The evoked discharge of either CFs or RARs was not in phase with the ventilatory cycle, whereas that of T-PSRs showed a respiratory modulation. Injection of a saline vehicle caused no significant change in the discharge of these receptors. Additionally, endotoxin significantly produced an increase in total lung resistance, and decreases in dynamic lung compliance and arterial blood pressure. Our results demonstrate that a majority of lung vagal sensory receptors are activated following intravenous injection of endotoxin, and support the notion that these pulmonary receptors may function as an important afferent system during endotoxemia.  相似文献   

5.
The present study, performed in nonsedated, conscious lambs, consisted of two parts. In the first part, we 1) examined for the first time whether a respiratory response to pulmonary C-fiber stimulation could be elicited in nonsedated newborns and 2) determined whether this response could be abolished by capsaicin pretreatment. Then, by using capsaicin-desensitized lambs, we studied whether pulmonary C fibers were involved in the sustained, active expiratory upper airway closure previously observed during pulmonary edema. Airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activities were recorded. In the first set of experiments, a 5-10 microg/kg capsaicin bolus intravenous injection in seven intact lambs consistently led to a typical pulmonary chemoreflex, showing that C fibers are functionally mature in newborn lambs. In the second series of experiments, eight lambs pretreated with 25-50 mg/kg subcutaneous capsaicin did not exhibit any respiratory response to 10-50 microg/kg intravenous capsaicin injection, implicating C fibers in the response. Finally, in the above capsaicin-desensitized lambs, we observed that halothane-induced high-permeability pulmonary edema did not cause the typical response of sustained expiratory upper airway closure seen in the intact lamb. We conclude that functionally mature C fibers are present and responsible for a pulmonary chemoreflex in response to capsaicin intravenous injection in nonsedated lambs. Capsaicin pretreatment abolishes this reflex. Furthermore, the sustained expiratory upper airway closure observed during halothane-induced pulmonary edema in intact nonsedated lambs appears to be related to a reflex involving stimulation of pulmonary C fibers.  相似文献   

6.
Schertel et al. (J. Appl. Physiol. 61: 1237-1240, 1984) reported that pulmonary C fibers initiate the prompt apnea followed by rapid shallow breathing evoked by pulmonary arterial injections of capsaicin. However, doubt has remained as to whether these changes in breathing pattern are induced exclusively by direct stimulation of pulmonary C fibers or whether secondary stimulation of slowly adapting pulmonary stretch receptors by capsaicin-induced reflex bronchoconstriction also contributes to the response. To determine the contribution of this secondary mechanism to changes in breathing pattern, we evoked the pulmonary chemoreflex in spontaneously breathing dogs before and after blockade of muscarinic receptors with atropine. Right atrial injections of capsaicin before the administration of atropine induced a classical pulmonary chemoreflex, i.e., apnea, hypotension, and bradycardia followed by rapid shallow breathing and bronchoconstriction. After atropine, all components of the pulmonary chemoreflex induced by right atrial injections of capsaicin remained intact except bronchoconstriction. However, the absolute magnitude of the change in each component of the reflex except apnea was significantly attenuated. We conclude that the classic pulmonary chemoreflex is a complex phenomenon initiated primarily by stimulation of pulmonary C fibers but significantly influenced by secondary stimulation of slowly adapting pulmonary stretch receptors.  相似文献   

7.
Inhalation of cigarette smoke into the lower airway via a tracheostomy evokes immediate apnea, bradycardia, and systemic hypotension in dogs. These responses can still be evoked when conduction in myelinated vagal fibers is blocked preferentially by cooling but are abolished by vagotomy, suggesting that they are mediated by afferent vagal C-fibers. To examine this possibility, we recorded impulses in pulmonary C-fibers in anesthetized, open-chest dogs and delivered 120 ml cigarette smoke to the lungs in a single ventilatory cycle. Pulmonary C-fibers were stimulated within 1 or 2 s of the delivery of smoke generated by high-nicotine cigarettes, activity increasing from 0.3 +/- 0.1 to a peak of 12.6 +/- 1.3 (SE) impulses/s, (n = 60); the evoked discharge usually lasted 3-5 s. Smoke generated by low-nicotine cigarettes evoked a milder stimulation in 33% of pulmonary C-fibers but did not significantly affect the overall firing frequency (peak activity = 2.2 +/- 1.1 impulses/s, n = 36). Hexamethonium (0.7-1.2 mg/kg iv) prevented C-fiber stimulation by high-nicotine cigarette smoke (n = 12) but not stimulation by right atrial injection of capsaicin. We conclude that pulmonary C-fibers are stimulated by a single breath of cigarette smoke and that nicotine is the constituent responsible.  相似文献   

8.
Spontaneous inhalation of acrolein vapor (350 ppm, 1 ml/100 g body wt) elicited an immediate and transient inhibitory effect on breathing in anesthetized rats, characterized by a prolongation of expiratory duration and accompanied by a bradycardia; ventilation was reduced by 47 +/- 6%, which returned to baseline after three to seven breaths. When both vagi were cooled to 6.6 +/- 0.1 degrees C, the reflex apneic response to lung inflation was completely abolished but the bradypneic response to acrolein was not affected. After perineural capsaicin treatment of both cervical vagi to selectively block the capsaicin-sensitive C-fiber afferents, acrolein no longer evoked an inhibitory effect on breathing; conversely, an augmented inspiration was consistently elicited with the first breath of acrolein inhalation, which was subsequently abolished by cooling both vagi to 6.5 degrees C. The inhibitory effect of inhaling acrolein at a lower concentration (200 ppm) was not detectable, whereas that of a higher concentration (600 ppm) was more intense and prolonged. All these responses were completely eliminated by bilateral vagotomy. These results suggest that inhaled acrolein activated both vagal C-fiber endings and rapidly adapting irritant receptors in the airways, but the acrolein-induced inhibitory effect on breathing was elicited primarily by the C-fiber afferent stimulation.  相似文献   

9.
Possible sensory receptor of nonadrenergic inhibitory nervous system   总被引:2,自引:0,他引:2  
To determine the sensory receptor of the nonadrenergic inhibitory nervous system (NAIS), 22 cats were anesthetized and serotonin was continuously administered (50-250 micrograms.kg-1.min-1 iv) to increase pulmonary resistance (RL) to 377 +/- 57% (SE) of the control value. We then 1) mechanically irritated the trachea, 2) intravenously administered capsaicin (5 micrograms/kg), or 3) induced hypoxia (arterial PO2 30-40 Torr) to stimulate irritant and bronchial C-fiber receptors, pulmonary C-fiber receptors, or the carotid body (chemoreceptors), respectively. After treatment with atropine (3 mg/kg iv) and propranolol (2 mg/kg iv), the serotonin-induced change in RL was reduced by 58.6 +/- 14.3% by mechanical irritation and 63.3 +/- 12.1% by intravenous capsaicin. However, hypoxia produced no dilatation of the airways. In further experiments, we employed capsaicin inhalation to stimulate bronchial C-fiber receptors. Inhaled capsaicin (0.1%, for 5 breaths) also reduced RL by 79.2 +/- 9.2% of the elevated value, after atropine and propranolol. Treatment with a ganglionic blocking agent, hexamethonium (2 mg/kg iv), abolished bronchodilator responses, implying that a reflex pathway through vagal nerves is involved in this phenomenon. These results suggest that pulmonary and bronchial C-fiber receptors may be involved as sensory receptors in NAIS reflex bronchodilatation.  相似文献   

10.
The present study was undertaken to gain further insight into the mechanisms responsible for the sustained active expiratory upper airway closure previously observed during high-permeability pulmonary edema in lambs. The experiments were conducted in nonsedated lambs, in which airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activity were recorded. We first studied the consequences of hemodynamic pulmonary edema (induced by impeding pulmonary venous return) on upper airway dynamics in five lambs; under this condition, a sustained expiratory upper airway closure consistently appeared. We then tested whether expiratory upper airway closure was related to vagal afferent activity from bronchopulmonary receptors. Five bivagotomized lambs underwent high-permeability pulmonary edema: no sustained expiratory upper airway closure was observed. Finally, we studied whether a sustained decrease in lung volume induced a sustained expiratory upper airway closure. Five lambs underwent a 250-ml pleural infusion: no sustained expiratory upper airway closure was observed. We conclude that 1) the sustained expiratory upper airway closure observed during pulmonary edema in nonsedated lambs is related to stimulation of vagal afferents by an increase in lung water and 2) a decrease in lung volume does not seem to be the causal factor.  相似文献   

11.
Mechano- and chemosensitive extrinsic primary afferents innervating the gastrointestinal tract convey important information regarding the state of ingested nutrients and specific motor patterns to the central nervous system via splanchnic and vagal nerves. Little is known about the organization of peripheral receptive sites of afferents and their correspondence to morphologically identified terminal structures. Mechano- and chemosensory characteristics and receptive fields of single vagal fibers innervating the stomach as well as lumbar splanchnic nerves innervating the distal colon were identified using an in vitro perifusion system. Twenty-three (17%) of one-hundred thirty-six vagal units identified were found to have multiple, punctate receptive fields, up to 35 mm apart, and were distributed throughout the stomach. Evidence was based on similarity of generated spike forms, occlusion, and latency determinations. Most responded with brief bursts of activity to mucosal stroking with von Frey hairs (10-200 mg) but not to stretch, and 32% responded to capsaicin (10(-5) M). They were classified as rapidly adapting mucosal receptors. Four (8%) of fifty-three single units recorded from the lumbar splanchnic nerve had more than one, punctate receptive field in the distal colon, up to 40 mm apart. They responded to blunt probing, particularly from the serosal side, and variously to chemical stimulation with 5-hydroxytryptamine and capsaicin. We conclude that a proportion of gastrointestinal mechanosensors has multiple receptive fields and suggest that they integrate mechanical and chemical information from an entire organ, constituting the generalists in visceral sensation.  相似文献   

12.
It has been shown that inhaled cigarette smoke activates vagal pulmonary C fibers and rapidly adapting receptors (RARs) in the airways and that nicotine contained in the smoke is primarily responsible. This study was carried out to determine whether nicotine alone can activate pulmonary sensory neurons isolated from rat vagal ganglia; the response of these neurons was determined by fura-2-based ratiometric Ca(2+) imaging. The results showed: 1) Nicotine (10(-4) M, 20 s) evoked a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in 175 of the 522 neurons tested (Delta[Ca(2+)](i) = 142.2 +/- 12.3 nM); the response was reproducible, with a small reduction in peak amplitude in the same neurons when the challenge was repeated 20 min later. 2) A majority (59.7%) of these nicotine-sensitive neurons were also activated by capsaicin (10(-7) M). 3) 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP; 10(-4) M, 20 s), a selective agonist of the neuronal nicotinic acetylcholine receptors (NnAChRs), evoked a pattern of response similar to that of nicotine. 4) The responses to nicotine and DMPP were either totally abrogated or markedly attenuated by hexamethonium (10(-4) M). 5) In anesthetized rats, right atrial bolus injection of nicotine (75-200 mug/kg) evoked an immediate (latency <1-2 s) and intense burst of discharge in 47.8% of the pulmonary C-fiber endings and 28.6% of the RARs tested. In conclusion, nicotine exerts a direct stimulatory effect on vagal pulmonary sensory nerves, and the effect is probably mediated through an activation of the NnAChRs expressed on the membrane of these neurons.  相似文献   

13.
The role of vagal bronchopulmonary C-fiber afferents in eliciting the immediate changes in breathing pattern after acute inhalation of cigarette smoke was assessed with a selective blockade of myelinated vagal afferents (innervating both stretch and irritant receptors) utilizing the method of differential cooling. In 15 of 17 chloralose-anesthetized dogs tested, spontaneous inhalation of cigarette smoke (19.7% avg conc, 500-700 ml vol) reproducibly caused the following immediate responses: apnea, bradycardia, and hypotension. These responses occurred within 1 to 2 breaths of smoke inhalation and were followed by a delayed hyperpnea. The apneic duration reached 326 +/- 33% (SE) (n = 15) of the mean base-line expiratory duration. Differential cold block of both vagi (coolant temperature 8.4 +/- 0.3 degrees C) abolished the reflex apnea induced by a positive-pressure (7-10 cmH2O) lung inflation but did not affect the apneic response to smoke inhalation (345 +/- 35%). The smoke-induced apnea was completely abolished by lowering the coolant temperature to -1.3 +/- 0.2 degrees C (n = 10) or by bilateral vagotomy (n = 5) and returned to the control level after both vagi were rewarmed. Based on these results, we suggest that the immediate apneic response to inhaled cigarette smoke is elicited by a stimulation of vagal C-fiber afferents in the lungs and airways.  相似文献   

14.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus nerve up to the central terminations were carefully dissected and placed in a perfusion chamber. Intracellular recordings were made from the soma of nodose neurons during mechanical stimulation of the stomach. Physiologically characterized neurons were labeled iontophoretically with neurobiotin and processed for immunohistochemical experiments. As shown by action potential responses triggered by stimulation of the upper thoracic vagus with a suction electrode, essentially all abdominal vagal afferents in mice conduct in the C-fiber range. Mechanosensitive gastric afferents encode stimulus intensities over a wide range without apparent saturation when punctate stimuli are used. Nine of 37 mechanosensitive vagal afferents expressed TRPV1 immunoreactivity, with 8 of the TRPV1-positive cells responding to stretch. A small number of mechanosensitive gastric vagal afferents express neurofilament heavy chains and did not respond to stretch. By maintaining the structural and functional integrity of vagal afferents up to the nodose ganglion, physiological and immunohistochemical properties of mechanosensory gastric sensory neurons can be studied in vitro. Using this novel technique, we identified TRPV1 immunoreactivity in only one-fourth of gastric mechanosensitive neurons, arguing against a major role of this ion channel in sensation of mechanical stimuli under physiological conditions.  相似文献   

15.
It is known that lung vagal C-fiber afferents play an important role in eliciting the tachypneic response to pulmonary air embolism (PAE), and can be subgrouped as those with low resistance (LRC) and those with high resistance (HRC) to perivagal capsaicin. In this study, we investigated the relative contributions of vagal LRC and HRC C-fiber afferents to the PAE-induced tachypneic response. Phrenic activity was recorded from 10 anesthetized, paralyzed, and artificially ventilated dogs. PAE was induced by infusion of air into the vein (2 ml/min, 1 ml/kg). During control conditions, induction of PAE produced a shortening in expiratory duration with no significant change in inspiratory duration, resulting in tachypnea. The PAE-induced tachypneic response was totally abolished by perivagal capsaicin treatment with a method (capsaicin concentration, 6 mg/ml; treatment duration, 25-30 min) that blocks the conduction of LRC C-fiber afferents, but not that of HRC C-fiber afferents. This tachypneic response was not affected by cooling of both vagi to a temperature (4.5 degrees C) that blocks the conduction of HRC C-fiber afferents, but not that of LRC C-fiber afferents. A bilateral cervical vagotomy virtually eliminated this tachypneic response. These results suggest that LRC C-fiber afferents are responsible for eliciting the reflex tachypneic response to PAE, whereas HRC C-fiber afferents play no vital role.  相似文献   

16.
The respiratory responses following stimulation of type J (pulmonary C fiber) receptors by right atrial injections of capsaicin were assessed in spontaneously breathing anesthetized dogs. At the reflexly effective threshold dose, the primary respiratory response elicited was tachypnoea. With higher doses of capsaicin, the tachypnoea was replaced by apnoea. Left atrial injections of capsaicin also resulted in apnoea, which was abolished or reduced by injecting Xylocaine into the pericardial sac, and after vagotomy, apnoea was replaced by tachypnoea. The latter findings suggested that the apnoea produced by left atrial injection of capsaicin might be due to stimulation of receptors with vagal afferents coursing through the pericardium. In vagotomized dogs, administration of capsaicin into the abdominal aorta above the origin of the iliac arteries (the iliac arteries were kept occluded) resulted in a hyperpnoeic response. Following the transection of the spinal cord between L4 and L5, capsaicin injection into the abdominal aorta caused apnoea instead of hyperpnoea. The apnoeic response elicited was abolished by transecting the spinal cord between L1 and L2. It is suggested that the respiratory responses observed were due to stimulation of receptors in the splanchnic bed connected to sympathetic afferents.  相似文献   

17.
We attempted to determine whether stimulation of pulmonary rapidly adapting receptors (RARs) increase tracheal submucosal gland secretion in anesthetized open-chest dogs. Electroneurographic studies of pulmonary afferents established that RARs but not lung C-fibers were stimulated by intermittent lung collapse during deflation, collapse being produced by removing positive end-expiratory pressure (PEEP, 4 cmH2O) or by applying negative end-expiratory pressure (NEEP, -4 cmH2O). We measured tracheal secretion by the "hillocks" method. Removing PEEP or applying NEEP for 1 min increased secretion from a base line of 6.0 +/- 1.1 to 11.8 +/- 1.7 and 22.0 +/- 2.8 hillocks.cm-2.min-1, respectively (P less than 0.005). After PEEP was restored, dynamic lung compliance (Cdyn) was 37% below control, and secretion remained elevated (P less than 0.05). A decrease in Cdyn stimulates RARs but not other pulmonary afferents. Hyperinflation, which restored Cdyn and RAR activity to control, returned secretion rate to base line. Secretory responses to lung collapse were abolished by vagal cooling (6 degrees C), by pulmonary vagal section, or by atropine. We conclude that RAR stimulation reflexly increases airway secretion. We cannot exclude the possibility that reduced input from slowly adapting stretch receptors contributed to the secretory response.  相似文献   

18.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

19.
In anesthetized dogs we examined the sensitivity of afferent vagal endings in the lungs to changes in airway fluid osmolarity. Injection of 0.25-0.5 ml/kg water or hyperosmotic sodium chloride solutions (1,200-2,400 mmol/l) into a lobar bronchus caused bradycardia, arterial hypotension, apnea followed by rapid shallow breathing, and contraction of tracheal smooth muscle. All effects were abolished by vagotomy. We examined the sensory mechanisms initiating these effects by recording afferent vagal impulses arising from the lung lobe into which the liquids were injected. Water stimulated pulmonary and bronchial C-fibers and rapidly adapting receptors; isosmotic saline and glucose solutions were ineffective. Hyperosmotic saline (1,200-9,600 mmol/l, 0.25-1 ml/kg) stimulated these afferents in a concentration-dependent manner. Stimulation began 1-10 s after the injection and sometimes continued for several minutes. Responses of slowly adapting stretch receptors varied. Our results suggest that non-isosmotic fluid in the lower airways initiates defense reflexes by stimulating pulmonary and bronchial C-fibers and rapidly adapting receptors. Conceivably, stimulation of these afferents as a result of evaporative water loss from airway surface liquid could contribute to exercise-induced asthma.  相似文献   

20.
Lin YS  Ho CY  Chang SY  Kou YR 《Life sciences》2000,66(18):1695-1704
Laryngeal exposure to wood smoke in rats evokes a reflex apnea which is mediated through superior laryngeal afferents (J. Appl. Physiol. 83: 723-730, 1997). To study the role of laryngeal C-fiber afferents in eliciting this response, capsaicin aerosol (0.05 - 0.2 microg/ml) and 5 ml of wood smoke were delivered separately into a functionally isolated larynx of anesthetized Sprague-Dawley rats at a constant flow rate of 1.4 ml/s, while animals breathed spontaneously. Studies were repeated after either an intravenous injection of ruthenium red (2 mg/kg; n = 8), a perineural capsaicin treatment (200 microg/ml for 5 min; n = 8) of the superior laryngeal nerves, or a perineural sham treatment (n = 8); Ruthenium red inhibits the stimulation of afferent C-fiber nerve endings by capsaicin, whereas perineural capsaicin treatment selective blocks the conduction of C-fiber afferents. Either ruthenium red or perineural capsaicin treatment abolished the apneic response to laryngeal capsaicin, but did not significantly affect the apneic response to laryngeal wood smoke. Furthermore, the apneic responses to both types of irritants were not significantly altered by perineural sham treatment, yet were completely eliminated by a subsequent denervation of superior laryngeal nerves. Our results suggest that superior laryngeal C-fiber afferents are not involved in eliciting the reflex apneic response to laryngeal wood smoke in anesthetized rats. It is speculated that this response may result mainly from the stimulation of myelinated afferents, possibly laryngeal irritant receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号