首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional organization and the histochemical nature of the various cellular components of the epidermis of Noemacheilus botia are described. The various histochemical techniques reveal the basic proteinaccous nature of the outer free margins of the polygonal cells of the most superficial layer of the epidermis. These cells remain metabolically active as revealed by their healthy nuclei and are not sloughed off at the surface. the lateral cell membranes of these cells are fused together forming a continuous barrier which plays important role in water proofing the skin. In addition the polygonal cells in the most superficial layer also undergo the process of mucogenesis synthesizing sulphated acid mucopolysaccharides which may ultimately form a part of the contents of the protective extracellular cuticular coat.  相似文献   

2.
The changes in distribution of mucopolysaccharides, glycogen and protein bound sulphydryl groups of cysteine in the various cellular components of the epidermis of Barbus sophor along with its structural alterations as a result of hyperosmotic stress, have been described using histochemical techniques. The hyperosmotic saline induces a cyclic secretion of acid mucopolysaccharides by the mucous cells. Simultaneously the polygonal cells also show a marked disturbance in the processes of mucogenesis and keratinization, indicating an inverse relationship between the degree of keratinization and the amount of mucus secreted by epidermis. The role of glycogen in the polygonal cells has been discussed in relation to disturbed mucogenesis. The appearance of intercellular spaces in basal layer and middle layer has been correlated with the passage for movement of increased amounts of nutrients through the skin.  相似文献   

3.
We describe the morphology of toe pads in the Himalayan tree frog Philautus annandalii. These are expanded tips of digits and show modifications of their ventral epidermis for adhesion. The outer cells of toe pad epidermis (TPE) bear surface microstructures (0.7 × 0.2 μm), which are keratinized. Their cytoplasm contains no organelles, but pleomorphic nuclei and mucous granules (0.4–0.5 μm) that glue the keratin filaments. In the intermediate cell layer of TPE, similar keratinized microstructures as in the outer cells are present, so that when the outer layer is shed, it is ready with features for adhesion. These cells contain more keratin than the outer cells. The basal cell layer contains thin keratin bundles and usual cell organelles. The dermis contains mucous‐secreting glands, whose ducts open in the outer epidermal cell layer in channels. The dorsal epidermal cells lack surface microstructures and keratin bundles. Ultrastructural features suggest that toe pads utilize the surface microstructures for adhesion aided by mucus, in which the intermediate cell layer seems to bear the shear stress generated during locomotion. Further, TPE can expand and fit into an increased contact area of the substrate. The long, surface microstructures may also help in mechanical interlocking with rough surfaces on plants.  相似文献   

4.
The ultrastructure of the epidermis of the lizard ( Lacerta vivipara ) one day after sloughing is described. The non-keratinized layers of the epidermis are essentially similar in structure to those of amphibians and mammals. The cells of the basal layer are not however separated from each other by the large spaces described in the amphibian (Farquhar & Palade, 1965). The middle layers of the epidermis at this stage of the sloughing cycle produce neither the characteristic mucous granules found in amphibians nor the keratohyalin granules of mammals. A small number of granules corresponding in size and location to the "Odland bodies" of both mammalian and amphibian epidermis are, however, present. The intermediate layer cells also contain a number of bodies similar in appearance to those described by Farquhar & Palade as lysosomes in amphibian skin. These structures are both osmium iodide and acid phosphatase positive. Unlike the condition in amphibians and mammals, the cytoplasm of cells in the layer immediately beneath the keratinized strata is honeycombed with small vesicles, and contains large irregular vacuoles of uncertain content. Certain nonkeratinizing elements within the epidermis are tentatively interpreted as nerve terminations. Two morphologically distinct keratinized strata can be distinguished, the inner stratum consisting of flattened cells similar to those of the stratum corneum of mammalian epidermis; individual cell outlines cannot be distinguished in the outer stratum, which has a structure similar to that of avian feather keratin. A shallow surface zone of the outer keratinized stratum has been identified as the Oberhautchen. This consists of longitudinally disposed leaflets or laminae which are responsible for the sculptured pattern of the epidermal surface. The observations reported here provide a basis for analysis of changes occurring at other stages of the sloughing cycle.  相似文献   

5.
Summary Histochemical reactions indicating keratinization have previously been demonstrated in parts of the epidermis of Bagarius bagarius. Fluorescence histochemistry and electron microscopy have now confirmed these results. Elevated areas of the epidermis are capped by a layer of dead cells with altered contents. On the outer aspect of these cells a dense layer, 18 nm thick, beneath the plasma membrane corresponds to the resistant envelope found in keratinized cells in tetrapod vertebrates. In Bagarius this layer does not extend to all faces of the keratinized cells, but a similar envelope has been detected in two other sites of piscine keratinized epidermis investigated, namely in the breeding tubercles of Phoxinus phoxinus and in the teeth of Lampetra fluviatilis. In the elevated areas of Bagarius-epidermis, the epithelial cells undergo progressive changes in cytoplasmic organization as they become more superficial. The second tier from the surface is sealed by tight junctions and is separated from the overlying keratinized cells by a sub-corneal space resembling that found in keratinized amphibian epidermis. Histochemical evidence of a high lipid content in the outer layers of the epidermis correlates with the presence of lipid inclusions and lamellated membranous profiles in the material studied by electron microscopy. Histochemical results show that the fin skin of Blennius pholis is not keratinized, but secretes a cuticle, histochemically reactive for both proteins and glycoproteins.  相似文献   

6.
The ultra-structure of the epidermis of the mudskipper,Periophthalmus modestus, was examined by both light and transmission electron microscopies. The epidermis is exceptionally not well endowed with mucous or granular cells. Filament-containing cells occur in three distinct layers of the surface, middle and basal epidermis. The surface layer is further subdivided into two layers, an outermost and less superficial one. Two different cell types were identified in the epidermis. Type I cells are fiat cells in a single stratum. Type II cells are enormous cells, characterized by having a large vacuole in the cytoplasm. The outermost layer is composed of a free surface of Type I cells and numerous microridges covered with a fuzzy, fibrillar substance. The “fuzz” forms a cuticule-like structure, but keratinization as found in terrestrial animals does not occur. The superficial layer contains Type I cells and intraepithelial blood capillaries. When Type I cells become senescent, numerous intercellular spaces are formed in the plasma membranes of adjacent cells, with the senescent cells finally falling off. Just beneath these cells, however, young cells of Type I are always found. The blood capillaries are usually reinforced with young Type I cells. A large volume of oxygen may be absorbed through the skin using the blood capillary network. The middle layer contains several strata of Type II cells. The special corky structure of these cells seems to play an important role in thermal insulation and protection against ultraviolet light in relation to life out of water. However, by comparison with terrestrial animals, the histological design of the epidermis of this goby appears incomplete, so as to reduce desiccation on land, owing to the epidermis lacking a keratinized stratum. The differentiation of the epidermis seems to be an adaptation for a terrestrial habit in this species.  相似文献   

7.
The skin of Bagarius bagarius (Ham.) is devoid of scales but is rough due to the presence of numerous pentagonal epidermal elevations, which are separated by deep furrows at regular intervals. These elevated pentagonal regions of the epidermis are covered by dead cornified cells in the form of caps. As the old cap goes off a new one is formed by the death of the underlying epidermal cells. The middle layer of the epidermis is mainly composed of well defined polygonal cells. Their cytoplasm is granular in nature and give reactions for protein bound sulphydryl groups. The stratum germinativum is composed of two types of basal cells, the columnar cells and the spherical cells. The flask shaped mucous glands are restricted to the epidermal furrows and secrete either neutral or acidic mucopolysaccharides. Certain large specialysed granular cells are found in the epidermis which are grouped around the taste buds. These specialysed cells may be the photocytes. Two layers of the dermis can be distinguished—the relatively thin stratum laxum and the thick stratum compactum. Dermal papillae mainly support the taste buds. The pigment cells are arranged in two layers in the dermis. The subcutis is composed of loose connective tissues, richly infiltrated with the fat cells, nerves and blood capillaries.  相似文献   

8.
松江鲈鱼皮肤的显微和亚显微结构   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电镜和透射电镜,对松江鲈鱼(Trachidermus fasciatus)成体皮肤的显微和亚显微结构进行了观察。结果表明,松江鲈鱼体表不同部位皮肤的厚薄不一,但基本结构相似。皮肤由表皮和真皮层构成。松江鲈鱼的皮肤裸露无鳞,表皮层较薄,由约4~8层细胞构成,主要由复层上皮细胞和黏液细胞及基底细胞组成。表层细胞呈扁平、多边形,细胞之间主要靠桥粒紧密连接,连接处形成增厚的边缘嵴状突起。表皮细胞游离面向内凹陷,表面形成指纹状微嵴。黏液细胞呈圆形或卵圆形,散布在上皮细胞之间。黏液细胞内的黏原颗粒具有椭圆颗粒状、均匀致密的块状和疏松丝状3种不同形态。真皮通过基膜与表皮相连,由稀疏层和致密层构成。真皮结缔组织在腹部较厚而在其他部位较薄。表皮与真皮连接处有色素层,头部、背部、尾柄和体侧皮肤色素细胞分布多,色素层明显,而腹部和颏部皮肤缺少色素。松江鲈鱼黄河群体真皮层中有角质棘状突起,而滦河群体则无。头部、体侧和尾柄处皮肤上还分布有侧线孔和表面神经丘等感觉器官。  相似文献   

9.
The mstacercarial cyst of Cloacitrema narrabeenensis which is formed in the open is composed of four layers: an outermost layer of acid mucopolysaccharide, a layer of protein which is presumed to be tanned, a layer of neutral mucopolysaccharide and an innermost layer of keratinized protein. The two layers which together form the outer cyst wall can be split off by slight pressure from the two remaining layers which together form the inner cyst wall. In the centre of the ventral side of the inner cyst wall, the keratinized layer is incomplete and this ventral plug region is composed of neutral mucopolysaccharide. The cyst wall is therefore very similar to that of Fasciola hepatica, the main difference being that the order of the two layers of the outer cyst is reversed. General evolutionary and functional relationships of metacercarial cysts are discussed.  相似文献   

10.
Summary Migration of bilayered epidermal cell sheets out of explants of tadpole tails (Xenopus laevis) were investigated with time-lapse cinemicrography using reflection-contrast optics. Cell-sheet formation begins beneath the explant in a region where it is closely attached to the coverslip. A single basal cell extends a lamellipodium through the outer (surface) epidermal layer and starts moving in a direction free of attached cells. This cell remains connected to the following basal cell, which the also extends a lamellipodium onto the glass. The cell sheet develops as increasingly more adjacent basal cells start to migrate. Surface cells do not actively locomote but they remain attached to the basal cells and to adjacent surface cells. Thus, they are transported as an intact cell layer, and consequently the in situ arrangement of the tadpole epidermis is largely preserved in the cell sheet, i.e., basal cells adhere to the substratum and are covered by outer cells (surface cells) which face the culture medium. Basal cells extend lamellae beneath the rear end of the preceding cell, which is slightly fifted off the substratum. The direction of locomotion is determined by the frontal cells. Cell-sheet enlargement and locomotion cease when all the epidermal cells facing the coverslip have left the explant, and the cell sheet and epidermis covering the explant form a continuous layer.  相似文献   

11.
In a variety of amphibians examined the stratum corneum was one cell in depth, although in Xenopus it was up to three cells deep. The flattened horny cells were closely fused together along their lateral membranes to form a continuous sheet. Disulphide bonds of keratin were most concentrated in the peripheral cytoplasm, but the interiors of the cornified cells were sufficiently well keratinized to prevent more than slight enzymatic cytolysis of the normal cell components. Characteristically large, weakly stainable, non-shrunken nuclear remnants were found in the salamander and frog horny layers, but the clawed toad had small pyknotic (parakeratotic) nuclei. The mature amphibian keratinocytes contained free fats, bound phospholipids, calcium and sulphydryl groups, together with acid phosphatase and non-specific esterase. Cornification appears to begin by a process of separate individual cell keratinization and lateral membranes of neighbouring cells only later become fused together. This differs from the process in higher vertebrates in which the cells undergoing keratinization form a uniform transitional layer in the epidermis. In the amphibian epidermis neighbouring cells occur in different stages of keratinization.  相似文献   

12.
The microanatomy of the epidermis of the domestic fowl is described and related to the distribution of various histochemical constituents involved in keratinization.
The avian horny layer over the back is composed of a loose network of structurally solid horny cells. This is in contrast to most mammalian epidermal horny cells in which structural keratin is found only in the peripheral cytoplasm, and the interior of the keratinocyte contains soluble products of cytolysis with possibly some free keratin filaments dispersed in the fluid material.
The avian tarsal epidermal horny scales show similarities to both the scales of lizards and snakes and to mammalian tail scales which appear to be homologous structures.
It is suggested that a thin layer of cells containing no detectable disulphide bonds, found in the tarsal scale region of the young chick, is probably mechanically weak and may function as a fission plane for sloughing of the horny layer. A specialized epidermis and thickened horny layer is developed in the fowl on the plantar underside of the toes, but this is quite different in structure from the mammalian plantar epidermis.
The overlapping of zones rich in ribonucleic acid (RNA) and bound cysteine (SH) in the growing feather suggests that protein synthesis and the preparatory stages to keratin disulphide bonding normally occur concurrently in feather formation. This is in contrast to the growing hair which has a region rich in RNA followed immediately before it becomes keratinized by a discrete keratogenous zone weak in RNA but rich in bound cysteine.  相似文献   

13.
The proliferation of the epidermis in soft skin, claws, and scutes of the carapace and plastron in the tortoise (Testudo hermanni) and the turtle (Chrysemys picta) were studied using autoradiographic and immunocytochemical methods. During the growing season, a basal keratinocyte in the epidermis of soft skin and claws takes 5-9 days to migrate into the corneous layer. In the tortoise, during fall/winter (resting season) a few alpha-keratin cells are produced in soft epidermis and hinge regions among scutes and occasional beta-keratin cells in the outer scute surface. When growth is resumed in spring (growing season), cell proliferation is intense, mainly around hinge regions and tips of marginal scutes. No scute shedding occurs and numerous beta-keratin cells are produced around the hinge regions, while alpha-keratin cells disappear. Beta-cells form a new thick corneous layer around the hinge regions, which constitute the growing rings of scutes. Beta-keratin cells produced in more central parts of scutes maintain a homogeneous thickness of the corneous layer along the whole scute surface. In the turtle, a more complicated process of scute growth occurs than in the tortoise. At the end of the growing season (late fall) the last keratinocytes formed beneath the old stratum corneum of the outer scale surface and hinge regions produce more alpha- than beta-keratin. These thin alpha-keratin cells form a scission layer below the old stratum corneum, which extends from the hinge regions toward the center of scutes and the tip of marginal scutes. In the resting season (fall/winter) most cells remain within the germinative layer of the carapace and plastron and a few alpha-cells move in 7-9 days into the corneous layer above hinge regions. In the following spring/summer (growing season) a new generation of beta-keratin cells is produced beneath the scission layer from the hinge region and more central part of the scutes. The epidermis of the inner surface of scutes and hinge regions contains most of the cells incorporating thymidine and histidine, while the remaining outer scute surface is less active. It takes 5-9 days for a newly produced beta-cell to migrate into the corneous layer. These cells form a new corneous layer that extends the whole scute surface underneath the maturing scission layer. The latter contains lipids and eventually flakes off, determining shedding of the above outer corneous layer in late spring or summer.  相似文献   

14.
Expression and the role of E- and P-cadherin in the histogenesis of the surface epidermis and hair follicles were examined using the upper lip skin of the mouse. P-cadherin is expressed exclusively in the proliferating region of these tissues, that is in the germinative layer of the surface epidermis, the outer root sheath and the hair matrix. E-cadherin is coexpressed in these layers but this molecule was also detected in non-proliferating regions such as the intermediate layer of the surface epidermis and the immature regions of the inner root sheath. Neither P- nor E-cadherin was detected in fully keratinized layers such as the horny layer of the surface epidermis, the outermost layer of the outer root sheath and the mature hair fibres. These two cadherins were not detected in dermal cells. We cultured pieces of the upper lip skin in vitro in the absence or presence of a monoclonal antibody to E-cadherin (ECCD-1) or to P-cadherin (PCD-1). In control cultures, skin morphogenesis normally occurred in a pattern whereby the hair follicles grew and dermal cells were condensed to form the dermal sheath. A mixture of ECCD-1 and PCD-1, however, induced abnormal morphogenesis in the skin in several respects. (1) The cuboidal or columnar arrangement of basal epithelial cells was distorted. (2) Hair follicles were deformed. (3) Condensation of dermal cells was suppressed, causing a homogeneous distribution of these cells. These results suggest that cadherins present in epidermal cells are involved not only in maintaining the arrangement of these cells but also in inducing dermal condensation.  相似文献   

15.
The pangolin scale is a horny derivative of the epidermis. It is complex in structure and is divisible into three distinct regions. The dorsal plate forms approximately one-sixth of the scale thickness. It is composed of flattened solid keratinized cells without basophilic nuclear remnants. This region tends to fray easily. The dorsal plate contains bound phospholipids and sulphydryl groups but is weak in disulphide bonds.
The bulk of the scale is made up of the intermediate plate formed of less flattened cells without basophilic nuclei. This region is rich in disulphide bonds but contains no appreciable bound phospholipids or sulphydryl groups.
The ventral plate is only a few cells thick and is rich in bound phospholipids, which also occur in the underlying scale bed epidermis.
These three regions of the scale are formed from separate epidermal germinal areas which do not develop a granular layer. Keratohyalin granules are, however, formed in the epidermis between the scales.
It is suggested on the basis of histological structure and dishribution of chemical constituents that pangolin scales are probably homologous with primate nails.
Evidence against the views that they are homologous with reptilian scales or are derived from compressed hairs is presented.  相似文献   

16.
The guinea pig plantar epidermis was examined by light-microscopical histochemical methods and by transmission electron microscopy. Autolysis of cell structure was much less complete in guinea pig plantar horny layer than in the back, and stainable cytoplasm was retained in keratinized cells but organelles were lost except for some degraded ultrastructural remnants. By light microscopy the whole thickness of the horny layer showed bound phospholipid and bound cysteine, and there was a weak cystine reaction at the peripheries of the keratinized cells. In ultrastructure the keratohyalin contained slightly larger subparticles than in the back skin. The horny layer was not divisible into basal, intermediate and superficial regions as in hairy skin. The stratum lucidum of light microscopy was not defined in electron micrographs. Osmium-stained cytoplasmic material was retained in horny cells about to be desquamated, in contrast to the empty appearance of these cells in hairy skin. Epidermal cells in plantar skin have ultrastructural cytoplasmic processes which are longer than they are broad. In the horny layer these interdigitate with those of neighbouring cells and are held together by lateral demonsomal junctions. Probably this gives mechanical strength against shearing forces experienced by the plantar horny layer.  相似文献   

17.
The embryonic scales of two Australian agamine lizards (Hypsilurus spinipes and Physignatus lesueuerii) derive from the undulation of the epidermis to form dome‐shaped scale anlage that later become asymmetric and produce keratinized layers. Glycogen is contained in basal and suprabasal cells of the forming outer scale surface that are destined to differentiate into β‐keratin cells. The outer peridermis is very flat, but the second epidermal layer, provisionally identified as an inner peridermis, is composed of large cells that accumulate vesicular bodies and a network of coarse filaments. The sequence of epidermal layers produced beneath the inner peridermis in these agamine lizards corresponds to that of previously studied lizards, but the first subperidermal layer has characteristics of both clear (keratohyalin‐like granules) and oberhautchen (dark β‐keratin packets) cells. This layer is here identified as an oberhautchen since it fuses with the underlying β‐keratinizing cells forming large spinulae as the entire tissue becomes syncytial so that the units appear to increase in size. These spinulae very likely represent sections of honeycomb‐shaped micro‐ornamentations. A mesos layer appears underneath the β‐layer before hatching. J. Morphol. 240:251–266, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.  相似文献   

19.
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer.  相似文献   

20.
Scanning electron microscopy (SEM) of the surface tubercles of a specialized mechanoreceptor found within the head of Elaphe obsoleta lindheimeri indicates that the tubercle consists of a craterlike structure with a peg emerging from its center. After removal of the outer keratinized layers of the epidermis, the SEM discloses a replicate tubercle on the underlying alpha keratin layer. Over 6000 tubercles were found within a single snake. The mechanoreceptors were more densely concentrated on anterior scales, and their number appears to be species specific so that they are more concentrated in snakes with smaller heads than in those with larger ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号