首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth (fresh weight), morphogenesis (leaves, roots and shoots) and essential oil composition of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) plants were determined after 8 weeks under 350, 1,500, 3,000, 10,000 and 30,000 µmol mol-1 CO2. Plants were grown in vitro on basal medium (BM) consisting of Murashige and Skoog salts and 0.8% agar that contained either 0 or 3% sucrose under a 16-h (day)/8-h (night) photoperiod at a light intensity of 180 µmol s-1 m-2 or in soil in a greenhouse under conditions of natural sunlight. Ultra-high CO2 levels (i.e. ́,000 µmol mol-1 CO2) substantially increased fresh weights, leaves, shoots and roots for all plants compared to plants grown under ambient air (350 µmol mol-1 CO2) both in vivo and in vitro. For both species, 10,000 µmol mol-1 CO2 was the optimum concentration to obtain the largest growth and morphogenesis responses under in vitro conditions, while the 3,000- to 10,000-µmol mol-1 CO2 range provided the largest yields for soil-grown plants. Essential oil composition (i.e. monoterpenes, piperitonone oxide and limonene from mint and aromatic phenol and thymol from thyme) from the shoot portion of plants grown at all CO2 levels was analyzed in CH2Cl2 extracts via gas chromatography. Higher levels of secondary compounds occurred in vitro when cultures were grown under ultra-high CO2 levels than in ambient air. The concentration of thymol, a major secondary compound in thyme plants grown on BM containing sucrose, was 317-fold higher at 10,000 µmol mol-1 CO2 than in plants grown under ambient air conditions with the same BM. The levels of secondary compound in in-vitro-grown plantlets exposed to ultra-high CO2 concentrations exceeded those occurring in plants grown in the greenhouse under the same CO2 levels. Substantially higher levels of secondary compound occurred in plants under ultra-high CO2 levels on BM containing sucrose than on BM lacking sucrose or in soil. Thymol levels in thyme plants grown on BM containing sucrose were 3.9-fold higher at 10,000 µmol mol-1 CO2 than in shoots grown on BM without sucrose under the same CO2 levels. High positive correlations occurred between thymol concentrations and CO2 levels, fresh weights, shoots, roots and leaves when thyme shoots were grown on BM with sucrose. High positive correlations for thyme shoots grown on BM without sucrose only occurred between thymol concentrations and CO2 levels, fresh weights, shoots and leaves. No positive correlations between thymol concentrations and CO2 levels or any growth or morphogenesis responses occurred for thyme shoots when grown in soil.  相似文献   

2.
. Growth (fresh weight) and morphogenesis (production of leaves, roots and shoots) of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) shoots were determined under atmospheres of 5%, 10%, 21%, 32%, or 43% O2 with either 350 or 10,000 µmol mol-1 CO2. Plants were grown in vitro on Murashige and Skoog salts, 3% sucrose and 0.8% agar under a 16/8-h (day/night) photoperiod with a light intensity of 180 µmol s-1 m-2. Growth and morphogenesis responses varied considerably for the two plant species tested depending on the level of O2 administered. Growth was considerably enhanced for both species under all O2 levels tested when 10,000 µmol mol-1 CO2 was added as compared to growth responses obtained at the same O2 levels tested with 350 µmol mol-1 CO2. Mint shoots exhibited high growth and morphogenesis responses for all O2 levels tested with 10,000 µmol mol-1 CO2. In contrast, thyme shoots exhibited enhanced growth and morphogenesis when cultured in ₁% O2 with 10,000 µmol mol-1 CO2 included compared to shoots cultured under lower O2 levels. Essential oil compositions (i.e. monoterpene, piperitenone oxide from mint and aromatic phenol, thymol from thyme) were analyzed from CH2Cl2 extracts via gas chromatography from the shoot portion of plants grown at all O2 levels. The highest levels of thymol were produced from thyme shoots cultured under 10% and 21% O2 with 10,000 µmol mol-1 CO2,and levels were considerably lower in shoots grown under either lower or higher O2 levels. Higher levels of piperitenone oxide were obtained from mint cultures grown under ₁% O2 with 10,000 µmol mol-1 CO2 compared to that obtained with lower O2 levels.  相似文献   

3.
Forest carbon balance under elevated CO2   总被引:10,自引:2,他引:8  
Free-air CO2 enrichment (FACE) technology was used to expose a loblolly pine (Pinus taeda L.) forest to elevated atmospheric CO2 (ambient + 200 µl l-1). After 4 years, basal area of pine trees was 9.2% larger in elevated than in ambient CO2 plots. During the first 3 years the growth rate of pine was stimulated by ~26%. In the fourth year this stimulation declined to 23%. The average net ecosystem production (NEP) in the ambient plots was 428 gC m-2 year-1, indicating that the forest was a net sink for atmospheric CO2. Elevated atmospheric CO2 stimulated NEP by 41%. This increase was primarily an increase in plant biomass increment (57%), and secondarily increased accumulation of carbon in the forest floor (35%) and fine root increment (8%). Net primary production (NPP) was stimulated by 27%, driven primarily by increases in the growth rate of the pines. Total heterotrophic respiration (Rh) increased by 165%, but total autotrophic respiration (Ra) was unaffected. Gross primary production was increased by 18%. The largest uncertainties in the carbon budget remain in separating belowground heterotrophic (soil microbes) and autotrophic (root) respiration. If applied to temperate forests globally, the increase in NEP that we measured would fix less than 10% of the anthropogenic CO2 projected to be released into the atmosphere in the year 2050. This may represent an upper limit because rising global temperatures, land disturbance, and heterotrophic decomposition of woody tissues will ultimately cause an increased flux of carbon back to the atmosphere.  相似文献   

4.
The objectives of this study were to investigate how different soil types and elevated N deposition (0.7 vs 7 g N m-2a-1) influence the effects of elevated CO2 (370 vs 570 µmol CO2 mol-1) on soil nutrients and net accumulation of N, P, K, S, Ca, Mg, Fe, Mn, and Zn in spruce (Picea abies) and beech (Fagus sylvatica). Model ecosystems were established in large open-top chambers on two different forest soils: a nutrient-poor acidic loam and a nutrient-rich calcareous sand. The response of net nutrient accumulation to elevated atmospheric CO2 depended upon soil type (interaction soil 2 CO2, P<0.05 for N, P, K, S, Ca, Mg, Zn) and differed between spruce and beech. On the acidic loam, CO2 enrichment suppressed net accumulation of all nutrients in beech (P<0.05 for P, S, Zn), but stimulated it for spruce (P<0.05 for Fe, Zn) On the nutrient-rich calcareous sand, increased atmospheric CO2 enhanced nutrient accumulation in both species significantly. Increasing the N deposition did not influence the CO2 effects on net nutrient accumulation with either soil. Under elevated atmospheric CO2, the accumulation of N declined relative to other nutrients, as indicated by decreasing ratios of N to other nutrients in tree biomass (all ratios: P<0.001, except the N to S ratio). In both the soil and soil solution, elevated CO2 did not influence concentrations of base cations and available P. Under CO2 enrichment, concentrations of exchangeable NH4+ decreased by 22% in the acidic loam and increased by 50% in the calcareous sand (soil 2 CO2, P<0.001). NO3- concentrations decreased by 10-70% at elevated CO2 in both soils (P<0.01).  相似文献   

5.
A free-air CO2 enrichment (FACE) system was designed to permit the experimental exposure of tall vegetation such as stands of forest trees to elevated atmospheric CO2 concentrations ([CO2]a) without enclosures that alter tree microenvironment. We describe a prototype FACE system currently in operation in forest plots in a maturing loblolly pine (Pinus taeda L.) stand in North Carolina, USA. The system uses feedback control technology to control [CO2] in a 26 m diameter forest plot that is over 10 m tall, while monitoring the 3D plot volume to characterize the whole-stand CO2 regime achieved during enrichment. In the second summer season of operation of the FACE system, atmospheric CO2 enrichment was conducted in the forest during all daylight hours for 96.7% of the scheduled running time from 23 May to 14 October with a preset target [CO2] of 550 μmol mol–1, ≈ 200 μmol mol–1 above ambient [CO2]. The system provided spatial and temporal control of [CO2] similar to that reported for open-top chambers over trees, but without enclosing the vegetation. The daily average daytime [CO2] within the upper forest canopy at the centre of the FACE plot was 552 ± 9 μmol mol–1 (mean ± SD). The FACE system maintained 1-minute average [CO2] to within ± 110 μmol mol–1 of the target [CO2] for 92% of the operating time. Deviations of [CO2] outside of this range were short-lived (most lasting < 60 s) and rare, with fewer than 4 excursion events of a minute or longer per day. Acceptable spatial control of [CO2] by the system was achieved, with over 90% of the entire canopy volume within ± 10% of the target [CO2] over the exposure season. CO2 consumption by the FACE system was much higher than for open-top chambers on an absolute basis, but similar to that of open-top chambers and branch bag chambers on a per unit volume basis. CO2 consumption by the FACE system was strongly related to windspeed, averaging 50 g CO2 m–3 h–1 for the stand for an average windspeed of 1.5 m s–1 during summer. The [CO2] control results show that the free-air approach is a tractable way to study long-term and short-term alterations in trace gases, even within entire tall forest ecosystems. The FACE approach permits the study of a wide range of forest stand and ecosystem processes under manipulated [CO2]a that were previously impossible or intractable to study in true forest ecosystems.  相似文献   

6.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

7.
We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 enrichment site in Rhinelander, Wisconsin. We added either 13C-labeled cellobiose or 13C-labeled N-acetylglucosamine to soils collected beneath ecologically distinct temperate trees exposed for 3 years to factorial CO2 (ambient and 200 µl l-1 above ambient) and O3 (ambient and 20 µl l-1 above ambient) treatments. For both labeled substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by 29% compared to ambient; elevated O3 eliminated this effect. Production of 13C-CO2 from soils beneath aspen (Populus tremuloides Michx.) and aspen-birch (Betula papyrifera Marsh.) was greater than that beneath aspen-maple (Acer saccharum Marsh.). Phospholipid fatty acid analyses (13C-PLFAs) indicated that the microbial community beneath plants exposed to elevated CO2 metabolized more 13C-cellobiose, compared to the microbial community beneath plants exposed to the ambient condition. Recovery of 13C in PLFAs was an order of magnitude greater for N-acetylglucosamine-amended soil compared to cellobiose-amended soil, indicating that substrate type influenced microbial metabolism and soil C cycling. We found that elevated CO2 increased fungal activity and microbial metabolism of cellobiose, and that microbial processes under early-successional aspen and birch species were more strongly affected by CO2 and O3 enrichment than those under late-successional maple.  相似文献   

8.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

9.
Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy   总被引:2,自引:0,他引:2  
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated under the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. The number of leaves, total length of stem, total leaf area,overall growth rate, total leaf, stem and root d. wt respondedpositively to increased CO2 but the leaf size and biomass allocationshowed no change with CO2 enrichment. Beaupre and Robusta showeda larger growth response than either Columbia River or Raspalje. The effects of CO2 enrichment were restricted to the early phaseof growth at the beginning of the growth season. Leaf cell numbers in all the clones were not affected by CO2enrichment. Leaf thickness was affected; this was mainly theresult of larger mesophyll cells and more extensive intercellularspaces. Poplar clones, CO2 enrichment, growth, leaf anatomy, leaf cell number  相似文献   

10.
In-situ estimates of fast-ice algal productivity at Cape Evans, McMurdo Sound, in 1999 were lower than at the same site in previous years. Under-ice irradiance was between 0 and 8 µmol photons m-2 s-1; the ice was between 1.9 and 2.0 m thick and the algal biomass averaged 150 mg chl a m-2, although values as high as 378 mg chl a m-2 were recorded. Production on 11 and 12 November was between 0.053 and 1.474 mg C m-2 h-1. When the data from 11 November were fitted to a hyperbolic tangent function, a multilinear regression gave estimates for Pmax of 0.571 nmol O2 cm-2 s-1, an ! of 0.167 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1 and an Ek of 3.419 µmol photons m-2 s-1. A Pmax of 2.674 nmol O2 cm-2 s-1, an ! of 0.275 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1, r of 0.305 nmol O2 cm-2 s-1 and an Ek of 9.724 µmol-1 photons m-2 s-1 were estimated from the 12 November data. The sea-ice algal community was principally comprised of Nitzschia stellata, Entomoneis kjellmanii and Berkeleya adeliensis. Other taxa present included N. lecointei, Fragilariopsis spp., Navicula glaciei, Pleurosigma spp. and Amphora spp. Variations in the method for estimating the thickness of the diffusive boundary layer were not found to significantly affect the measurements of oxygen flux. However, the inability to accurately measure fine-scale variations in biomass is thought to contribute to the scatter of the P versus E data.  相似文献   

11.
Carbon Dioxide Effects on Carbohydrate Status and Partitioning in Rice   总被引:6,自引:0,他引:6  
The atmospheric carbon dioxide (CO2) concentration has beenrising and is predicted to reach double the present concentrationsometime during the next century. The objective of this investigationwas to determine the long-term effects of different CO2 concentrationson carbohydrate status and partitioning in rice (Oryza sativaL cv. IR-30). Rice plants were grown season-long in outdoor,naturally sunlit, environmentally controlled growth chamberswith CO2 concentrations of 160, 250, 330, 500, 660, and 900µmolCO2 mol1 air. In leaf blades, the priority between the partitioningof carbon into storage carbohydrates or into export changedwith developmental stage and CO2 concentration. During vegetativegrowth, leaf sucrose and starch concentrations increased withincreasing CO2 concentration but tended to level off above 500µmolmol–1 CO2. Similarly, photosynthesis also increased withCO2 concentrations up to 500µmol mol–1 and thenreached a plateau at higher concentrations. The ratio of starchto sucrose concentration was positively correlated with theCO2 concentration. At maturity, increasing CO2 concentrationresulted in an increase in total non-structural carbohydrate(TNC) concentration in leaf blades, leaf sheaths and culms.Carbohydrates that were stored in vegetative plant parts beforeheading made a smaller contribution to grain dry weight at CO2concentrations below 330µmol mol–1 than for treatmentsat concentrations above ambient Increasing CO2 concentrationhad no effect on the carbohydrate concentration in the grainat maturity Key words: CO2 enrichment, starch, sucrose  相似文献   

12.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

13.
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated in the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. Stomatal density, stomatal index, length of stomatal pore andepidermal cell density were not affected by CO2 enrichment inany of the clones. Lack of differences in stomatal density orindex indicate that there were no direct effects of CO2 enrichmenton the initiation of the number of stomata during ontogenesisor on epidermal cell expansion at a later stage. Stomatal conductance decreased because of the effect of CO2on stomatal opening. The average reduction in both adaxial andabaxial surface has been estimated at 41%. Beaupre showed thelargest response of stomatal conductance and Columbia Riverthe smallest. Poplar clones, CO2 enrichment, stomatal density, stomatal length, stomatal conductance  相似文献   

14.
Ten-year-old trees from four Italian populations of Pinus leucodermis (populations A, B, C and D), which were collected from different sites at different altitudes, were grown near Florence, Italy. Needle CO2 gas exchange and chlorophyll fluorescence response to increasing light intensities were evaluated; gas exchange and chlorophyll fluorescence variation between April and July were also monitored. Populations A, B and C showed a similar photosynthetic response to increasing photosynthetic photon flux density (PPFD) intensities, while at various light intensities population D, which originated from the highest altitude, showed the highest photosynthetic rates. In this population photosynthesis was saturated at PPFDs higher than 900 µmol m-2s-1 and a slow decrease of effective photosystem II quantum yield and F'V/F'M in response to increasing PPFDs were found. The same trees also showed a faster recovery in photosynthesis from limitations induced by winter temperatures than the other three populations. This work showed that photosynthetic response to light in population D was different from the other populations; trees from this population were probably naturally selected to prevent photoinhibition due to excess light.  相似文献   

15.
Winter wheat (Triticum aestivum L. cv. Hereward) was grown inthe field inside polyethylene-covered tunnels at a range oftemperatures at either 380 or 684 µmol mol–1 CO2.Serial harvests were taken from anthesis until harvest maturity.Grain yield was reduced by warmer temperatures, but increasedby CO2 enrichment at all temperatures. During grain-filling,individual grain dry weight was a linear function of time fromanthesis until mass maturity (attainment of maximum grain dryweight) within each plot. The rate of progress to mass maturity(the reciprocal of time to mass maturity) was a positive linearfunction of mean temperature, but was not affected by CO2 concentration.The rate of increase in grain dry weight per ear was 2.0 mgd–1 greater per 1 C rise, and was 8.0 mg d–1 greaterat 684 compared with 380 µmol mol–1 CO2 at a giventemperature. The rate of increase in harvest index was 1.0%d–1 in most plots at 380 µmol mol–1 CO2 andin open field plots, compared with 1.18% d–1 in all plotsat 684 µmol mol–1 CO2. Thus, the increased rateof grain growth observed at an elevated CO2 concentration couldbe attributed partly to a change in the partitioning of assimilatesto the grain. In contrast, the primary effect of warmer temperatureswas to shorten the duration of grain-filling. The rate of graingrowth at a given temperature and the rate of increase in harvestindex were only independent of the number of grains per earabove a critical grain number of 23–24 grains per ear({small tilde}20 000 grains m–2). Key words: Winter wheat, grain growth, temperature, CO2, harvest index, critical grain number  相似文献   

16.
The stomatal response of seedlings grown in 360 or 720 µmolmol–1 to irradiance and leaf-to-air vapour pressure deficit(VPD) at both 360 and 720 µmol mol–1 to CO2 wasmeasured to determine how environmental factors interact withCO2 enrichment to affect stomatal conductance. Seedlings offour species with different conductances and life histories,Cercis canadensis (L.), Quercus rubra (L.), Populus deltoides(Bartr. ex Marsh.) P. nigra (L.), and Pinus taeda (L.), weremeasured in hopes of identifying general responses. Conductanceof seedlings grown at 360 and 720 µmol mol–1 CO2were similar and responded in the same manner to measurementCO2 concentration, irradiance and VPD. Conductance was lowerfor all species when measured at 720 than when measured at 360µmol mol–1 CO2 at both VPDs ({small tilde}1.5 and{small tilde}2.5 kPa) and all measured irradiances greater thanzero (100, 300, 600,>1600 µmol m–2 S–2)The average decrease in conductance due to measurement in elevatedCO2 concentration was 32% for Cercis, 29% for Quercus, 26% forPopulus, and 11% for Pinus. For alt species, the absolute decreasein conductance due to measurement in CO2 enrichment decreasedas irradiance decreased or VPD increased. The proportional decreasedue to measurement in CO2 enrichment decreased in three of eightcases: from 0.46 to 0.10 in Populus and from 0.18 to 0.07 inPinus as irradiance decreased from>1600 to 100 µmolm–2 s–1 and from 0.35 to 0.24 in Cercis as VPD increasedfrom 1.3 to 2.6 kPa. Key words: Stomatal conductance, CO2 enrichment, irradiance, vapour pressure deficit  相似文献   

17.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

18.
In 2017, the Birmingham Institute of Forest Research (BIFoR) began to conduct Free Air Carbon Dioxide Enrichment (FACE) within a mature broadleaf deciduous forest situated in the United Kingdom. BIFoR FACE employs large‐scale infrastructure, in the form of lattice towers, forming ‘arrays’ which encircle a forest plot of ~30 m diameter. BIFoR FACE consists of three treatment arrays to elevate local CO2 concentrations (e[CO2]) by +150 µmol/mol. In practice, acceptable operational enrichment (ambient [CO2] + e[CO2]) is ±20% of the set point 1‐min average target. There are a further three arrays that replicate the infrastructure and deliver ambient air as paired controls for the treatment arrays. For the first growing season with e[CO2] (April to November 2017), [CO2] measurements in treatment and control arrays show that the target concentration was successfully delivered, that is: +147 ± 21 µmol/mol (mean ± SD) or 98 ± 14% of set point enrichment target. e[CO2] treatment was accomplished for 97.7% of the scheduled operation time, with the remaining time lost due to engineering faults (0.6% of the time), CO2 supply issues (0.6%) or adverse weather conditions (1.1%). CO2 demand in the facility was driven predominantly by wind speed and the formation of the deciduous canopy. Deviations greater than 10% from the ambient baseline CO2 occurred <1% of the time in control arrays. Incidences of cross‐contamination >80 µmol/mol (i.e. >53% of the treatment increment) into control arrays accounted for <0.1% of the enrichment period. The median [CO2] values in reconstructed three‐dimensional [CO2] fields show enrichment somewhat lower than the target but still well above ambient. The data presented here provide confidence in the facility setup and can be used to guide future next‐generation forest FACE facilities built into tall and complex forest stands.  相似文献   

19.
Growth and photosynthetic responses of dwarf apple saplings (Malus domestica Borkh. cv. Fuji) acclimated to 3 years of exposure to contrasting atmospheric CO2 concentrations (360 and 650 µmol mol-1) in combination with current ambient or elevated (ambient +5°C) temperature patterns were determined. Four 1-year-old apple saplings grafted onto M.9 rootstocks were each enclosed in late fall 1997 in a controlled environment unit in nutrient-optimal soil. Soil moisture regimes were automatically controlled by drip irrigation scheduled at 50 kPa of soil moisture tension. For the elevated CO2 concentration alone, overall tree growth was suppressed. However, tree growth was slightly enhanced when warmer temperatures were combined with the elevated CO2 concentration. Neither temperature nor CO2 concentration affected leaf chlorophyll content and stomatal density. The elevated CO2 concentration decreased mean leaf area, but increased starch accumulation, thus resulting in a higher specific dry mass of leaves. An elevated temperature reduced starch accumulation. Light-saturated rates of leaf photosynthesis were suppressed due to the elevated CO2 concentration, but this effect was removed or enhanced with warmer temperatures. The elevated CO2 concentration increased the optimum temperature for photosynthesis by ca. 4°C, while the warmer temperature did not. The results of this study suggested that the long-term adaptation of apple saplings to growth at an elevated CO2 concentration may be associated with a potential for increased growth and productivity, if a doubling of the CO2 concentration also leads to elevated temperatures.  相似文献   

20.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m–2s–1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m–2 s–1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号