首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.  相似文献   

2.
The 5'-end maturation of tRNAs is catalyzed by the ribonucleoprotein enzyme ribonuclease P (RNase P) in all organisms. Here we provide, for the first time, a comprehensive overview on the representation of individual RNase P protein homologs within the Eukarya and Archaea. Most eukaryotes have homologs for all four protein subunits (Pop4, Rpp1, Pop5 and Rpr2) present in the majority of Archaea. Pop4 is the only RNase P protein subunit identifiable in all Eukarya and Archaea with available genome sequences. Remarkably, there is no structural homology between bacterial and archaeal-eukaryotic RNase P proteins. The simplest interpretation is that RNase P has an 'RNA-alone' origin and progenitors of Bacteria and Archaea diverged very early in evolution and then pursued completely different strategies in the recruitment of protein subunits during the transition from the 'RNA-alone' to the 'RNA-protein' state of the enzyme.  相似文献   

3.
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.  相似文献   

4.
Comparative analysis of ribonuclease P RNA structure in Archaea.   总被引:11,自引:1,他引:10       下载免费PDF全文
Although the structure of the catalytic RNA component of ribonuclease P has been well characterized in Bacteria, it has been little studied in other organisms, such as the Archaea. We have determined the sequences encoding RNase P RNA in eight euryarchaeal species: Halococcus morrhuae, Natronobacterium gregoryi, Halobacterium cutirubrum, Halobacteriurn trapanicum, Methanobacterium thermoautotrophicum strains deltaH and Marburg, Methanothermus fervidus and Thermococcus celer strain AL-1. On the basis of these and previously available sequences from Sulfolobus acidocaldarius, Haloferax volcanii and Methanosarcina barkeri the secondary structure of RNase P RNA in Archaea has been analyzed by phylogenetic comparative analysis. The archaeal RNAs are similar in both primary and secondary structure to bacterial RNase P RNAs, but unlike their bacterial counterparts these archaeal RNase P RNAs are not by themselves catalytically proficient in vitro.  相似文献   

5.
Ribonuclease P is an ancient enzyme that cleaves pre-tRNAs to generate mature 5' ends. It contains an essential RNA subunit in Bacteria, Archaea, and Eukarya, but the degree to which the RNA subunit relies on proteins to supplement catalysis is highly variable. The eukaryotic nuclear holoenzyme has recently been found to contain almost twenty times the protein content of the bacterial enzymes, in addition to having split into at least two related enzymes with distinct substrate specificity. In this review, recent progress in understanding the molecular architecture and functions of nuclear forms of RNase P will be considered.  相似文献   

6.
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.  相似文献   

7.
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.  相似文献   

8.
Characterization of the RNase P RNA of Sulfolobus acidocaldarius.   总被引:8,自引:1,他引:7       下载免费PDF全文
RNase P is the ribonucleoprotein enzyme that cleaves precursor sequences from the 5' ends of pre-tRNAs. In Bacteria, the RNA subunit is the catalytic moiety. Eucaryal and archaeal RNase P activities copurify with RNAs, which have not been shown to be catalytic. We report here the analysis of the RNase P RNA from the thermoacidophilic archaeon Sulfolobus acidocaldarius. The holoenzyme was highly purified, and extracted RNA was used to identify the RNase P RNA gene. The nucleotide sequence of the gene was determined, and a secondary structure is proposed. The RNA was not observed to be catalytic by itself, but it nevertheless is similar in sequence and structure to bacterial RNase P RNA. The marked similarity of the RNase P RNA from S. acidocaldarius and that from Haloferax volcanii, the other known archael RNase P RNA, supports the coherence of Archaea as a phylogenetic domain.  相似文献   

9.
Bacterial RNase P is composed of an RNA subunit and a single protein (encoded by the rnpB and rnpA genes respectively). The Bacillus subtilis rnpA knockdown strain d7 was used to screen for functional conservation among bacterial RNase P proteins from a representative spectrum of bacterial subphyla. We demonstrate conserved function of bacterial RNase P (RnpA) proteins despite low sequence conservation. Even rnpA genes from psychrophilic and thermophilic bacteria rescued growth of B. subtilis d7 bacteria; likewise, terminal extensions and insertions between beta strands 2 and 3, in the so-called metal binding loop, were compatible with RnpA function in B. subtilis. A deletion analysis of B. subtilis RnpA defined the structural elements essential for bacterial RNase P function in vivo. We further extended our complementation analysis in B. subtilis strain d7 to the four individual RNase P protein subunits from three different Archaea, as well as to human Rpp21 and Rpp29 as representatives of eukaryal RNase P. None of these non-bacterial RNase P proteins showed any evidence of being able to replace the B. subtilis RNase P protein in vivo, supporting the notion that archaeal/eukaryal RNase P proteins are evolutionary unrelated to the bacterial RnpA protein.  相似文献   

10.
Archaeal and bacterial RNase P RNAs are similar in sequence and secondary structure, but in the absence of protein, the archaeal RNAs are much less active and require extreme ionic conditions for activity. To assess how readily the activity of the archaeal RNA alone could be improved by small changes in sequence, in vitro selection was used to generate variants of a Methanobacterium formicicum RNase P RNA: Bacillus subtilus pre-tRNA(Asp) self-cleaving conjugate RNA. Functional variants were generated with a spectrum of mutations that were predominately consistent with natural variation in this RNA. Variants generated from the selection had cleavage rates comparable to that of wild type; variants with improved cleavage rates or lower ionic requirements were not obtained. This suggests that the RNase P RNAs of Bacteria and Archaea are globally optimized and the basis for the large biochemical differences between these two types of RNase P RNA is distributed in the molecule.  相似文献   

11.
Cells overexpressing the RNA-processing enzymes RNase III, RNase E and RNase P were fractionated into membrane and cytoplasm. The RNA-processing enzymes were associated with the membrane fraction. The membrane was further separated to inner and outer membrane and the three RNA-processing enzymes were found in the inner membrane fraction. By assaying for these enzymatic activities we showed that even in a normal wild-type strain of Escherichia coli these enzymes fractionate primarily with the membrane. The RNA part of RNase P is found in the cytosolic fraction of cells overexpressing this RNA, while the overexpressed RNase P protein sediments with the membrane fraction; this suggests that the RNase P protein anchors the RNA catalytic moiety of the enzyme to a larger entity. The implications of these findings for the cellular organization of the RNA-processing enzymes in the cell are discussed.  相似文献   

12.
In the Archaea only a handful of ribonucleases involved in RNA processing and degradation have been characterized. One potential group of archaeal ribonucleases are homologues of the bacterial RNase J family, which have a β-CASP metallo-β-lactamase fold. Here we show that β-CASP proteins encoded in the genomes of the hyperthermophilic Euryarchaeota Pyrococcus abyssi and Thermococcus kodakaraensis are processive exoribonucleases with a 5′ end dependence and a 5′ to 3′ directionality. We named these enzymes Pab-RNase J and Tk-RNase J, respectively. RNAs with 5′-monophosphate or 5′-hydroxyl ends are preferred substrates of Pab-RNase J, whereas circularized RNA is resistant to Pab-RNase J activity. Degradation of a 3′ end-labeled synthetic RNA in which an internal nucleoside is substituted by three ethylene glycol units generates intermediates demonstrating 5′ to 3′ directionality. The substitution of conserved residues in Pab-RNase J predicted to be involved in the coordination of metal ions demonstrates their importance for ribonuclease activity, although the detailed geometry of the catalytic site is likely to differ from bacterial RNase J. This is the first identification of a 5′-exoribonuclease encoded in the genomes of the Archaea. Phylogenetic analysis shows that euryarchaeal RNase J has been inherited vertically, suggesting an ancient origin predating the separation of the Bacteria and the Archaea.  相似文献   

13.
Although archaeal RNase P RNAs are similar in both sequence and structure to those of Bacteria rather than eukaryotes, and heterologous reconstitution between the Bacillus subtilis RNase P protein and some archaeal RNase P RNAs has been demonstrated, no archaeal protein sequences with similarity to any known bacterial RNase P protein subunit have been identified, and the density of Methanothermobacter thermoautotrophicus RNase P in Cs2SO4 (1.42 g/mL) is inconsistent with a single small bacterial-like protein subunit. Four hypothetical open reading frames (MTH11, MTH687, MTH688, and MTH1618) were identified in the genome of M. thermoautotrophicus that have sequence similarity to four of the nine Saccharomyces cerevisiae RNase P protein subunits: Pop4p, Pop5p, Rpp1p, and Rpr2p, respectively. Polyclonal antisera generated to recombinant Mth11p, Mth687p, Mth688p, and Mth1618p each recognized a protein of the predicted molecular weight in western blots of partially purified M. thermoautotrophicus RNase P, and immunoprecipitated RNase P activity from the same partially purified preparation. RNase P in Archaea is therefore composed of an RNA subunit similar to bacterial RNase P RNA and multiple protein subunits similar to those in the eukaryotic nucleus.  相似文献   

14.
RNase P is a ubiquitous endoribonuclease responsible for cleavage of the 5' leader of precursor tRNAs (pre-tRNAs). Although the protein composition of RNase P holoenzymes varies significantly among Bacteria, Archaea, and Eukarya, the holoenzymes have essential RNA subunits with several sequences and structural features that are common to all three kingdoms of life. Additional structural elements of the RNA subunits have been found that are conserved in eukaryotes, but not in bacteria, and might have functions specifically required by the more complex eukaryotic holoenzymes. In this study, we have mutated four eukaryotic-specific conserved regions in Saccharomyces cerevisiae nuclear RNase P RNA and characterized the effects of the mutations on cell growth, enzyme function, and biogenesis of RNase P. RNase P with mutations in each of the four regions tested is sufficiently functional to support life although growth of the resulting yeast strains was compromised to varying extents. Further analysis revealed that mutations in three different regions cause differential defects in holoenzyme assembly, localization, and pre-tRNA processing in vivo and in vitro. These data suggest that most, but not all, eukaryotic-specific conserved regions of RNase P RNA are important for the maturation and function of the holoenzyme.  相似文献   

15.
The transfer RNA 5' maturation enzyme RNase P has been characterized in Bacteria, Archaea, and Eukarya. The purified enzyme from all three kingdoms is a ribonucleoprotein containing an essential RNA subunit; indeed, the RNA subunit of bacterial RNase P RNA is the sole catalytic component. In contrast, the RNase P activity isolated from spinach chloroplasts lacks an RNA component and appears to function as a catalytic protein. Nonetheless, the chloroplast enzyme recognizes a pre-tRNA substrate for E. coli RNase P and cleaves it as efficiently and precisely as does the bacterial enzyme. To ascertain whether there are differences in catalytic mechanism between an all-RNA and an all-protein RNase P, we took advantage of the fact that phosphodiester bond selection and hydrolysis by the E. coli RNase P ribozyme is directed by a Mg2+ ion coordinated to the nonbridging pro-Rp oxygen of the scissile bond, and is blocked by sulfur replacement of this oxygen. We therefore tested the ability of the chloroplast enzyme to process a precursor tRNA containing this sulfur substitution. Partially purified RNase P from spinach chloroplasts can accurately and efficiently process phosphorothioate-substituted pre-tRNAs; cleavage occurs exclusively at the thio-containing scissile bond. The enzymatic throughput is fivefold slower, consistent with a general chemical effect of the phosphorothioate substitution rather than with a metal coordination deficiency. The chloroplast RNase P reaction mechanism therefore does not involve a catalytic Mg2+ bonded to the pro-Rp phosphate oxygen, and hence is distinct from the mechanism of the bacterial ribozyme RNase P.  相似文献   

16.
Eukaryotic ribonuclease (RNase) P and RNase MRP are evolutionary related RNA-based enzymes involved in metabolism of various RNA molecules, including tRNA and rRNA. In contrast to the closely related eubacterial RNase P, which is comprised of an RNA component and a single small protein, these enzymes contain multiple protein components. Here we report the results of footprinting studies performed on purified Saccharomyces cerevisiae RNase MRP and RNase P holoenzymes. The results identify regions of the RNA components affected by the protein moiety, suggest a role of the proteins in stabilization of the RNA fold, and point to substantial similarities between the two evolutionary related RNA-based enzymes.  相似文献   

17.
The varieties of ribonuclease P.   总被引:13,自引:0,他引:13  
Ribonuclease P is a ribozyme involved in tRNA processing that is present in all cells and organelles that synthesize tRNA. Most of our understanding of ribonuclease P derives from studies of the bacterial enzyme. This enzyme has been characterized biochemically and a secondary structure for the RNA subunit has been proposed. Isolation and characterization of ribonuclease P from diverse Archaea and Eukarya are now modifying and adding to our model of this unusual enzyme. The latter instances of RNase P differ from the bacterial version, but similarities are emerging.  相似文献   

18.
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.  相似文献   

19.
20.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号