首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

2.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   

3.
Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein–protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes’ CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.  相似文献   

4.
We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant “cellulosomized” enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equivalent mixture of wild-type enzymes. In the present work, a fourth T. fusca cellulase, Cel5A, was equipped with a dockerin and intervening linker segments of different lengths to assess their contribution to the overall activity of simple one- and two-enzyme designer cellulosome complexes. The results demonstrated that cellulose binding played a major role in the degradation of crystalline cellulosic substrates. The combination of the converted Cel5A endoglucanase with the converted Cel48A exoglucanase also exhibited a measurable proximity effect for the most recalcitrant cellulosic substrate (Avicel). The length of the linker between the catalytic module and the dockerin had little, if any, effect on the activity. However, positioning of the dockerin on the opposite (C-terminal) side of the enzyme, consistent with the usual position of dockerins on most cellulosomal enzymes, resulted in an enhanced synergistic response. These results promote the development of more complex multienzyme designer cellulosomes, which may eventually be applied for improved degradation of plant cell wall biomass.In nature, some anaerobic cellulolytic bacteria produce cellulosomes, which are organized by the action of scaffoldin subunits that usually contain a single carbohydrate-binding module (CBM) and multiple cohesin modules (2, 7, 13, 14, 28, 36). This arrangement allows the integration of several dockerin-containing enzymes into a complex, which is then targeted to the cellulosic substrate by the common CBM. The cellulosomal enzymes then exhibit enhanced synergistic activity, presumably due to their spatial proximity and coordinated interaction. In contrast, the enzyme systems of aerobic bacteria and fungi comprise free (uncomplexed) enzymes, which differ from cellulosomal systems in that many of them contain their own CBM that delivers the individual catalytic module to the surface of the substrate (39, 41, 42).In previous work, we used the designer cellulosome concept (5) to construct unique minicellulosomes of defined content (16, 32, 33). In order to construct designer cellulosomes, chimeric scaffoldins have been prepared which contained two or more cohesins that matched the dockerins of the enzymes (native cellulosomal or dockerin-fused chimeras). Enzymes that contain dockerins that match the specificity of a scaffoldin-borne cohesin can then be selectively integrated into the designer cellulosome at a specified site. Cellulosomal enzymes containing either a native dockerin or a divergent dockerin can be inserted on different sites of a chimeric scaffoldin. Alternatively, a free, noncellulosomal enzyme can be included in designer cellulosomes by replacing its native CBM with a dockerin of choice. In some cases, designer cellulosomes displayed enhanced synergistic activity over the parallel free-enzyme system (15, 17). This increased activity was shown to be a function of both a substrate-targeting effect (contributed by the CBM on the chimeric scaffoldin) and the enzyme proximity effect, thus supporting the initial hypothesis.In recent studies, we have investigated the free-cellulase system of Thermobifida fusca for use in designer cellulosome systems. This aerobic thermophilic cellulolytic bacterium contains a limited set of six free cellulases, each composed of a catalytic module and a crystalline-cellulose binding family 2 CBM (CBM2) module on either the N or C terminus of the protein. T. fusca contains three endoglucanases (Cel5A, Cel6A, and Cel9B), two exocellulases (Cel6B and Cel48A), and one processive endoglucanase (Cel9A). Previously, we converted both family 6 cellulases and the family 48 exoglucanase from the free to the cellulosomal mode of action by replacing their native CBM2s with a dockerin module (11, 12). All three chimeric enzymes exhibited cellulose-degrading activity on both soluble and crystalline substrates. The results indicated that the family 48 exoglucanase appeared to be well adapted to the cellulosomal mode of action, whereas the family 6 exoglucanase is less appropriate for inclusion into cellulosomes. Indeed, family 48 cellulases have been found to be a major component in every native cellulosome thus far described, in contrast to the family 6 cellulases, which have been identified only in free-cellulase systems.An important feature of the free-acting fungal and bacterial cellulases is that they contain a linker segment, often rich in prolines and threonines, that connects the catalytic module to the CBM (37). The role of such flexible linkers is thought to ensure independent action of the adjacent functional modules, thus allowing progressive and efficient hydrolysis of cellulose by the catalytic modules (6, 9, 10, 20, 25-27, 34, 36, 38, 40). The present communication focuses on the effect of linker length and dockerin position (relative to the catalytic module) on enzymatic activity within a designer cellulosome. For this purpose we have employed the highly active family 5 endoglucanase Cel5A from T. fusca (21, 22, 29), which was converted to the cellulosomal mode by replacement of its CBM with a dockerin module. Chimeric dockerin derivatives were prepared on either the N or C terminus of the Cel5A catalytic module, separated by linker segments of different lengths. In most cases, binary designer cellulosomes, comprising the respective Cel5A chimera together with a Cel48A chimera, were shown to be more efficient on crystalline cellulosic substrates than the combination of the wild-type free enzymes.  相似文献   

5.
During the course of our studies on the structure–function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in ‘designer cellulosomes’. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   

6.
During the course of our studies on the structure-function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in 'designer cellulosomes'. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   

7.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

8.
Cellulases containing a family 9 catalytic domain and a family 3c cellulose binding module (CBM3c) are important components of bacterial cellulolytic systems. We measured the temperature dependence of the activities of three homologs: Clostridium cellulolyticum Cel9G, Thermobifida fusca Cel9A, and C. thermocellum Cel9I. To directly compare their catalytic activities, we constructed six new versions of the enzymes in which the three GH9-CBM3c domains were fused to a dockerin both with and without a T. fusca fibronectin type 3 homology module (Fn3). We studied the activities of these enzymes on crystalline cellulose alone and in complex with a miniscaffoldin containing a cohesin and a CBM3a. The presence of Fn3 had no measurable effect on thermostability or cellulase activity. The GH9-CBM3c domains of Cel9A and Cel9I, however, were more active than the wild type when fused to a dockerin complexed to scaffoldin. The three cellulases in complex have similar activities on crystalline cellulose up to 60°C, but C. thermocellum Cel9I, the most thermostable of the three, remains highly active up to 80°C, where its activity is 1.9 times higher than at 60°C. We also compared the temperature-dependent activities of different versions of Cel9I (wild type or in complex with a miniscaffoldin) and found that the thermostable CBM is necessary for activity on crystalline cellulose at high temperatures. These results illustrate the significant benefits of working with thermostable enzymes at high temperatures, as well as the importance of retaining the stability of all modules involved in cellulose degradation.  相似文献   

9.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

10.
Cellulosomes are multi-enzyme complexes produced by certain anaerobic bacteria that exhibit efficient degradation of plant cell wall polysaccharides. To understand their enhanced levels of hydrolysis, we are investigating the effects of converting a free-cellulase system into a cellulosomal one. To achieve this end, we are replacing the cellulose-binding module of the native cellulases, produced by the aerobic bacterium Thermobifida fusca, with a cellulosome-derived dockerin module of established specificity, to allow their incorporation into defined "designer cellulosomes". In this communication, we have attached divergent dockerins to the two exoglucanases produced by T. fusca exoglucanase, Cel6B and Cel48A. The resultant fusion proteins were shown to bind efficiently and specifically to their matching cohesins, and their activities on several different cellulose substrates were compared. The lack of a cellulose-binding module in Cel6B had a deleterious effect on its activity on crystalline substrates. In contrast, the dockerin-bearing family-48 exoglucanase showed increased levels of hydrolytic activity on carboxymethyl cellulose and on both crystalline substrates tested, compared to the wild-type enzyme. The marked difference in the response of the two exoglucanases to incorporation into a cellulosome, suggests that the family-48 cellulase is more appropriate than the family-6 enzyme as a designer cellulosome component.  相似文献   

11.
In this study, novel cellulosome chimeras exhibiting atypical geometries and binding modes, wherein the targeting and proximity functions were directly incorporated as integral parts of the enzyme components, were designed. Two pivotal cellulosomal enzymes (family 48 and 9 cellulases) were thus appended with an efficient cellulose-binding module (CBM) and an optional cohesin and/or dockerin. Compared to the parental enzymes, the chimeric cellulases exhibited improved activity on crystalline cellulose as opposed to their reduced activity on amorphous cellulose. Nevertheless, the various complexes assembled using these engineered enzymes were somewhat less active on crystalline cellulose than the conventional designer cellulosomes containing the parental enzymes. The diminished activity appeared to reflect the number of protein-protein interactions within a given complex, which presumably impeded the mobility of their catalytic modules. The presence of numerous CBMs in a given complex, however, also reduced their performance. Furthermore, a "covalent cellulosome" that combines in a single polypeptide chain a CBM, together with family 48 and family 9 catalytic modules, also exhibited reduced activity. This study also revealed that the cohesin-dockerin interaction may be reversible under specific conditions. Taken together, the data demonstrate that cellulosome components can be used to generate higher-order functional composites and suggest that enzyme mobility is a critical parameter for cellulosome efficiency.  相似文献   

12.
Exploration of New Geometries in Cellulosome-Like Chimeras   总被引:5,自引:0,他引:5       下载免费PDF全文
In this study, novel cellulosome chimeras exhibiting atypical geometries and binding modes, wherein the targeting and proximity functions were directly incorporated as integral parts of the enzyme components, were designed. Two pivotal cellulosomal enzymes (family 48 and 9 cellulases) were thus appended with an efficient cellulose-binding module (CBM) and an optional cohesin and/or dockerin. Compared to the parental enzymes, the chimeric cellulases exhibited improved activity on crystalline cellulose as opposed to their reduced activity on amorphous cellulose. Nevertheless, the various complexes assembled using these engineered enzymes were somewhat less active on crystalline cellulose than the conventional designer cellulosomes containing the parental enzymes. The diminished activity appeared to reflect the number of protein-protein interactions within a given complex, which presumably impeded the mobility of their catalytic modules. The presence of numerous CBMs in a given complex, however, also reduced their performance. Furthermore, a “covalent cellulosome” that combines in a single polypeptide chain a CBM, together with family 48 and family 9 catalytic modules, also exhibited reduced activity. This study also revealed that the cohesin-dockerin interaction may be reversible under specific conditions. Taken together, the data demonstrate that cellulosome components can be used to generate higher-order functional composites and suggest that enzyme mobility is a critical parameter for cellulosome efficiency.  相似文献   

13.
A β-glucosidase from Clostridium cellulovorans (CcBG) was fused with one of three different types of cellulases from Clostridium thermocellum, including a cellulosomal endoglucanase CelD (CtCD), a cellulosomal exoglucanase CBHA (CtCA) and a non-cellulosomal endoglucanase Cel9I (CtC9I). Six bifunctional enzymes were constructed with either β-glucosidase or cellulase in the upstream. CtCD-CcBG showed the favorable specific activities on phosphoric acid swollen cellulose (PASC), an amorphous cellulose, with more glucose production (2 folds) and less cellobiose accumulation (3 folds) when compared with mixture of the single enzymes. Moreover, CtCD-CcBG had significantly improved thermal stability with a melting temperature (Tm) of 10.9 °C higher than that of CcBG (54.5 °C) based on the CD unfolding experiments. This bifunctional enzyme is thus useful in industrial application to convert cellulose to glucose.  相似文献   

14.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

15.
In recent work, we reported the self-assembly of a comprehensive set of defined "bifunctional" chimeric cellulosomes. Each complex contained the following: (i) a chimeric scaffoldin possessing a cellulose-binding module and two cohesins of divergent specificity and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. This approach allowed the controlled integration of desired enzymes into a multiprotein complex of predetermined stoichiometry and topology. The observed enhanced synergy on recalcitrant substrates by the bifunctional designer cellulosomes was ascribed to two major factors: substrate targeting and proximity of the two catalytic components. In the present work, the capacity of the previously described chimeric cellulosomes was amplified by developing a third divergent cohesin-dockerin device. The resultant trifunctional designer cellulosomes were assayed on homogeneous and complex substrates (microcrystalline cellulose and straw, respectively) and found to be considerably more active than the corresponding free enzyme or bifunctional systems. The results indicate that the synergy between two prominent cellulosomal enzymes (from the family-48 and -9 glycoside hydrolases) plays a crucial role during the degradation of cellulose by cellulosomes and that one dominant family-48 processive endoglucanase per complex is sufficient to achieve optimal levels of synergistic activity. Furthermore cooperation within a cellulosome chimera between cellulases and a hemicellulase from different microorganisms was achieved, leading to a trifunctional complex with enhanced activity on a complex substrate.  相似文献   

16.
The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and beta- glucosidases. A gene encoding endoglucanase, designated as cel12, was cloned from total RNA prepared from F. palustris grown at the expense of Avicel. The gene encoding Cel12 has an open reading frame of 732 bp, encoding a putative protein of 244 amino acid residues with a putative signal peptide residing at the first 18 amino acid residues of the N-terminus of the protein. Sequence analysis of Cel12 identified three consensus regions, which are highly conserved among fungal cellulases belonging to GH family 12. However, a cellulose-binding domain was not found in Cel12, like other GH family 12 fungal cellulases. Northern blot analysis showed a dramatic increase of cel12 mRNA levels in F. palustris cells cultivated on Avicel from the early to late stages of growth and the maintenance of a high level of expression in the late stage, suggesting that Cel12 takes a significant part in endoglucanase activity throughout the growth of F. palustris. Adventitious expression of cel12 in the yeast Pichia pastoris successfully produced the recombinant protein that exhibited endoglucanase activity with carboxymethyl cellulose, but not with crystalline cellulose, suggesting that the enzyme is not a processive endoglucanase unlike two other endoglucanases previously identified in F. palustris.  相似文献   

17.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, the synergistic interactions of cellulases (endoglucanase E, EngE; endoglucanase L, EngL) and hemicellulases (arabinofuranosidase A, ArfA; xylanase A, XynA) were determined on the degradation of corn fiber, a natural substrate containing mainly xylan, arabinan, and cellulose. The degradation by XynA and ArfA of cellulose/arabinoxylan was greater than that of corn fiber and resulted in 2.6-fold and 1.4-fold increases in synergy, respectively. Synergistic effects were observed in increments in both simultaneous and sequential reactions with ArfA and XynA. These synergistic enzymes appear to represent potential rate-limiting enzymes for efficient hemicellulose degradation. When mini-cellulosomes were constructed from the cellulosomal enzymes (XynA and EngL) and mini-CbpA with cohesins 1 and 2 (mini-CbpA1&2) and mini-CbpA with cohesins 5 and 6 (mini-CbpA5&6), higher activity was observed than that for the corresponding enzymes alone. Based on the degradation of different types of celluloses and hemicelluloses, the interaction between cellulosomal enzymes (XynA and EngL) and mini-CbpA displayed a diversity that suggests that dockerin-cohesin interaction from C. cellulovorans may be more selective than random.  相似文献   

18.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA minicellulosomes and cellulase minicellulosomes were found to degrade corn cell walls synergistically but not purified substrates such as xylan and crystalline cellulose. The mixture of XynA and cellulases at a molar ratio of 1:2 showed the highest synergistic effect of 1.6 on corn cell wall degradation. The amounts both of xylooligosaccharides and cellooligosaccharides liberated from corn cell walls were increased by the synergistic action of XynA and cellulases. Although synergistic effects on corn cell wall degradation were found in simultaneous reactions with XynA and cellulases, no synergistic effects were observed in sequential reactions. The possible mechanism of synergism between XynA and cellulases is discussed.  相似文献   

19.
Although cellulosic materials of plant origin are the most abundant utilizable biomass resource, the amino acid-producing organism Corynebacterium glutamicum can not utilize these materials. Here we report the engineering of a C. glutamicum strain expressing functional minicellulosomes containing chimeric endoglucanase E bound to miniCbpA from Clostridium cellulovorans that can hydrolyze cellulosic materials. The chimeric endoglucanase E consists of the endoglucanase E catalytic backbone of Clostridium thermocellum fused with the endoglucanase B dockerin domain of C. cellulovorans. The resulting strain degraded cellulose efficiently by substrate targeting via the carbohydrate binding module. The assembly of minicellulosomes increased the activity against carboxymethyl cellulose approximately 2.8-fold compared with that for the corresponding enzymes alone. This is the first report of the formation of Clostridium minicellulosomes by C. glutamicum. The development of C. glutamicum strain that is capable of more effective cellulose hydrolysis brings about a realization of consolidated bioprocessing for the utilization of cellulosic biomass.  相似文献   

20.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号