首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P-NMR, small angle X-ray diffraction and freeze-fracture electron microscopy show that dioleoylphosphatidylcholine liposomes undergo a transition from the lamellar to the hexagonal HII phase upon injection of an ethanolic solution of gramicidin in the aqueous medium, when the molar ratio of peptide to lipid is 1 to 20 or higher.  相似文献   

2.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7890-7898
The macroscopic organization, lipid head group conformation, and structural and dynamic properties of 2H2O were investigated in dioleoylphosphatidylcholine (DOPC) model systems of varying gramicidin and 2H2O (or H2O) content by means of small-angle X-ray diffraction and 31P and 2H NMR. At low stages of hydration, N less than 6 (N = 2H2O/DOPC molar ratio), a single lamellar phase is observed in which the gramicidin molecules become preferentially hydrated upon increasing N. For 6 less than N less than 12 phase separation occurs between a gramicidin-poor and a gramicidin-rich lamellar phase. This latter phase is characterized by a smaller repeat distance and decreased DOPC head group order. For N greater than 12, the gramicidin-rich lamellar phase converts to a hexagonal HII phase. Thus, hydration of gramicidin is a prerequisite for HII phase formation in the DOPC/gramicidin system. The HII phase is very rich in gramicidin and 2H2O (gramicidin:DOPC:H2O = 1:1.1:0.9 w/w/w). A model is proposed in which self-assembly of hydrated gramicidin molecules into domains of a specific structure plays a determinant role in the formation of the HII phase by gramicidin.  相似文献   

3.
Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of peptide incorporation. The same solvent dependence is observed for the enhancement of transbilayer reorientation of lysophospholipids and unspecific leak formation in intact erythrocytes at lower gramicidin concentrations. These results indicate that the (beta 6.3) conformation of the peptide is essential for all three membrane perturbing effects.  相似文献   

4.
Gramicidin-induced hexagonal HII phase formation in erythrocyte membranes   总被引:3,自引:0,他引:3  
Using 31P nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and freeze-fracture electron microscopic (FFEM) techniques, it is shown that gramicidin induces a hexagonal HII phase not only in liposomes prepared from total lipids extracted from human erythrocytes but also in isolated human erythrocyte membranes (white ghosts). A 37 degrees C, HII phase formation is detected at a gramicidin to phospholipid molar ratio exceeding 1:80. At a molar ratio of 1:5, about 30% of the phospholipid is organized in the HII phase. The gramicidin-induced HII phase exhibits a very small 31P chemical shift anisotropy [(CSA) approximately 10 +/- 1 ppm], indicating decreased head-group order, and it displays a temperature-dependent increase in tube diameter from 60.2 A at 4 degrees C to 64.2 A at 37 degrees C in ghosts and from 62.8 to 69.4 A at 37 degrees C in total lipid extracts, both in the presence of 1 mol of gramicidin/10 mol of phospholipid. This anomalous temperature-dependent behavior is probably due to the presence of cholesterol. 31P NMR data indicate that the HII phase formation by gramicidin is temperature dependent and show the gradual disappearance of the HII phase at low temperatures (less than 20 degrees C), resulting in a bilayer type of 31P NMR line shape at 4 degrees C, whereas SAXS and FFEM data suggest equal amounts of HII phases at all temperatures. This apparent discrepancy is probably the result of a decrease in the rate of lateral diffusion of the membrane phospholipids which leads to incomplete averaging of the 31P CSA in the HII phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Melittin induces HII phase formation in cardiolipin model membranes   总被引:3,自引:0,他引:3  
The interaction of melittin with bovine heart cardiolipin model membranes was investigated via binding assays, 31P-NMR, freeze-fracture electron microscopy, small angle X-ray diffraction and fluorescence based fusion assays. A strong binding (Kd less than 10(-7) M) appeared to be accompanied by the formation of large structures, resulting from a fusion process of extremely fast initial rate. As the melittin content is increased, bilayer structure is gradually lost and from a cardiolipin to melittin ratio of about 6 the lipid starts to organize itself in an hexagonal HII phase. At lower temperatures (T less than 40 degrees C) the coexistence of another structure is observed, characterized by a broad isotropic 31P-NMR signal and giving rise to sharp X-ray reflections, most probably a cubic phase, as suggested also be freeze-fracture images, showing orderly stacked particles. The results are discussed in relation to contrasting observations on the structural changes induced by melittin in the zwitterionic phospholipid system of dipalmitoylphosphatidylcholine (Dufourcq. J. et al. (1986) Biochim. Biophys. Acta 859, 33-48). The biological relevance of the observations with respect to the process of protein insertion into membranes is indicated.  相似文献   

6.
The role of the tryptophan-residues in gramicidin-induced HII phase formation was investigated in dioleoylphosphatidylcholine (DOPC) model membranes. 31P-NMR and small angle X-ray diffraction measurements showed, that gramicidin A and C (in which tryptophan-11 is replaced by tyrosine) induce a similar extent of HII phase formation, whereas for gramicidin B and synthetic analogs in which one tryptophan, either at position 9 or 11 is replaced by phenylalanine, a dramatic decrease of the HII phase inducing activity can be observed. Modification of all four tryptophans by means of formylation of the indole NH group leads to a complete block of HII phase formation. Sucrose density centrifugation experiments on the various peptide/lipid samples showed a quantitative incorporation of the peptide into the lipid. For all samples in a 1/10 molar ratio of peptide to lipid distinct bands were found, indicative of a phase separation. For the gramicidin A'/DOPC mixture these bands were analyzed and the macroscopic organization was determined by 31P-NMR and small-angle X-ray diffraction. The results demonstrate that a quantitative phase separation had occurred between a lamellar phase with a gramicidin/lipid ratio of 1/15 and a hexagonal HII phase, which is highly enriched in gramicidin. A study on the hydration properties of tryptophan-N-formylated gramicidin in mixtures with DOPC showed that this analog has a similar dehydrating effect on the lipid headgroup as the unmodified gramicidin. In addition both the hydration study and sucrose density centrifugation experiments showed that, like gramicidin also its analogs have a tendency to aggregate, but with differences in aggregation behaviour which seemed related to their HII phase inducing activity. It is proposed that the main driving force for HII phase formation is the tendency of gramicidin molecules to self-associate and organize into tubular structures such as found in the HII phase and that whether gramicidin (analogs) form these or other types of aggregates depends on their tertiary structure, which is determined by intra- as well as intermolecular aromatic-aromatic stacking interactions.  相似文献   

7.
The influence of cholesterol incorporation on gramicidin-induced hexagonal HII phase formation in different phosphatidylcholine model systems was investigated by 31P- and 2H-NMR, small-angle X-ray diffraction and differential scanning calorimetry. In liquid-crystalline distearoylphosphatidylcholine systems cholesterol inhibits gramicidin-induced HII phase formation. In dioleoylphosphatidylcholine the opposite effect is observed. Cholesterol appears to preferentially interact with gramicidin under liquid-crystalline conditions in both systems. Two phenomena that had been reported for gramicidin-treated erythrocyte membranes and derived liposomes (Tournois, H., Leunissen-Bijvelt, J., Haest, C.W.M., De Gier, J. and De Kruijff, B. (1987) Biochemistry, 26, 6613-6621) could also be observed in more simple dioleoylphosphatidylcholine-gramicidin-cholesterol systems. These are (i) an increase in tube diameter in the gramicidin-induced HII phase with increasing temperature, which is ascribed to the presence of cholesterol in this phase, and (ii) the loss of the hexagonal HII phase related 31P-NMR line shape at lower temperatures despite the presence of this phase as demonstrated with X-ray diffraction. This latter phenomenon appears to be due to restrictions in the rate of lateral diffusion of the phospholipids around the HII tubes due to the presence of gramicidin.  相似文献   

8.
Previously it was shown that gramicidin can induce HII phase formation in diacylphosphatidylcholine model membranes only when the lipid acyl chain length exceeds 16 carbon atoms (Van Echteld, C.J.A., De Kruijff, B., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1982) Biochim. Biophys. Acta 692, 126-138). Using 31P-NMR and small angle X-ray diffraction we now demonstrate that upon increasing the length of gramicidin, the peptide loses its ability to induce HII phase formation in di-C18:1c-PC but not in the longer chained di-C22:1c-PC. It is concluded that a mismatch in length between gramicidin and the lipid acyl chains, when the latter would provide excess bilayer thickness, is a prerequisite for HII phase formation in phosphatidylcholine model membranes.  相似文献   

9.
Hydrocarbon chain conformation in the HII phase.   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

10.
The effect of gramicidin on macroscopic structure of the negatively charged membrane phospholipids cardiolipin, dioleoylphosphatidylglycerol and dioleoylphosphatidylserine in aqueous dispersions was investigated and compared with the effect of gramicidin on dioleoylphosphatidylcholine. It was shown by small-angle X-ray diffraction, 31P nuclear magnetic resonance and freeze-fracture electron microscopy that in all these lipid systems gramicidin is able to induce the formation of a hexagonal HII phase. 31P-NMR measurements indicated that the extent of HII phase formation in the various lipids ranged from about 40% to 60% upon gramicidin incorporation in a molar ratio of peptide to lipid of 1 : 10. Next, the following charged analogues of gramicidin were prepared: desformylgramicidin, N-succinylgramicidin and O-succinylgramicidin. The synthesis was verified with 13C-NMR and the effect of these analogues on lipid structure was investigated. It was shown that, as with gramicidin itself, the analogues induce HII phase formation in dioleoylphosphatidylcholine, lower and broaden the bilayer-to-HII phase transition in dielaidoylphosphatidylethanolamine and form lamellar structures upon codispersion with palmitoyllysophosphatidylcholine. Differential scanning calorimetry measurements indicated that, again like gramicidin, in phosphatidylethanolamine the energy content of the gel-to-liquid-crystalline phase transition is not affected by incorporation of the analogues, whereas in phosphatidylcholine a reduction of the transition enthalpy is found. These observations were explained in terms of a similar tendency to self-associate for gramicidin and its charged analogues. The results are discussed in the light of the various factors which have been suggested to be of importance for the modulation of lipid structure by gramicidin.  相似文献   

11.
It is shown by 31P-NMR and electron microscopy that gramicidin promotes the formation of the hexogonal HII phase in aqueous dispersions of dielaidoylphosphatidylethanolamine and dioleoylphosphatidylethanolamine, when present in molar ratios of 1 : 200 and higher. In addition gramicidin also induces the hexogonal HII phase in aqueous dispersions of dioleoylphosphatidylcholine, when present in molar ratios of 1 : 25 and higher.  相似文献   

12.
Important biological processes, such as vesicle fusion or budding, require the cell matrix to undergo a transition from a lamellar to a nonlamellar state. Although equilibrium properties of membranes are amenable to detailed theoretical studies, collective rearrangements involved in phase transitions have thus far only been modeled on a qualitative level. Here, for the first time, the complete transition pathway from a multilamellar to an inverted hexagonal phase is elucidated at near-atomic detail using a recently developed coarse-grained molecular dynamics simulation model. Insight is provided into experimentally inaccessible data such as the molecular structure of the intermediates and the kinetics involved. Starting from multilamellar configurations, the spontaneous formation of stalks between the bilayers is observed on a nanosecond timescale at elevated temperatures or reduced hydration levels. The stalks subsequently elongate in a cooperative manner leading to the formation of an inverted hexagonal phase. The rate of stalk elongation is approximately 0.1 nm ns(-1). Within a narrow hydration/temperature/composition range the stalks appear stable and rearrange into the rhombohedral phase.  相似文献   

13.
14.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7881-7890
The effect of gramicidin incorporation on the thermodynamic properties of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) dispersions was investigated by differential scanning calorimetry. The results show that incorporation of gramicidin in PC systems results in a decrease of the energy content of the gel to liquid-crystalline phase transition. When incorporated in PE systems, however, the peptide does not affect the properties of the gel to liquid-crystalline phase transition with the exception that at high gramicidin concentrations the onset of the melting process is shifted to a slightly lower temperature. We therefore assume that in the lamellar gel state of PE aggregation of the peptide occurs. To get more insight into the nature of the gramicidin-PE interaction, we studied the motional and structural details of HII phase formation in gramicidin/PE systems with the use of 31P and 13C nuclear magnetic resonance (NMR) and small-angle X-ray diffraction. In agreement with earlier results [Van Echteld, C. J. A., Van Stigt, R., de Kruijff, B., Leunissen-Bijvelt, J., Verkleij, A. J., & De Gier, J. (1981) Biochim. Biophys. Acta 648, 287-291] it was shown that gramicidin incorporation lowers and broadens the bilayer to hexagonal HII phase transition in PE systems. 31P NMR chemical shift anisotropy (CSA) measurements indicated that a phase separation occurs between a gramicidin-poor lamellar phase and a gramicidin-rich HII phase. From combined CSA and spin-lattice relaxation time (T1) measurements it was suggested that in the HII phase gramicidin decreases the molecular order and increases the rate of motion of the phosphate moiety of PE. In addition, 13C NMR line width measurements indicated that the acyl chains are more disordered in the HII phase than in the lamellar phase and that a similar disorder occurs in the HII phase of the pure PE as in the gramicidin-rich HII phase. This interpretation was supported by the X-ray diffraction data, which show similar first-order repeat distances in both types of HII phase. From saturation-transfer NMR experiments in PE and gramicidin-PE mixtures it was shown that no exchange occurs between the lamellar and the HII phases in the time scale of 1-2 s, suggesting a macroscopic phase separation. Finally, we discussed the gramicidin-lipid interaction and in particular the HII phase formation by gramicidin in PE and in PC systems. It is proposed that aggregation of the peptide plays a crucial role in HII phase formation.  相似文献   

15.
M W Tate  S M Gruner 《Biochemistry》1989,28(10):4245-4253
The characteristic temperature dependence of the lattice basis vector length d of phospholipid-water systems in the inverted hexagonal (HII) phase has been investigated with X-ray diffraction. For 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), d falls sharply from 78.1 A at 10 degrees C to 62.5 A at 90 degrees C. When used in conjunction with the volume fractions of the constituents, d can be used to determine the dimensions within the lipid and water regions. These data showed that a reduction in the radius of the HII-phase water cylinders Rw accounted for most of the reduction in d. From geometrical relationships between the dimensions in the HII phase, it was shown that both d and Rw are sensitive functions of the thickness of the lipid monolayer dHII. The characteristic shape of d(T) could be parameterized with the small temperature dependence of dHII along with the ratio v/a, which is the ratio of the specific volume to the area per lipid molecule at the polar interface. The ratio v/a was found to be independent of temperature for the fully hydrated HII system. Additional measurements made with a mixture of DOPE and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), mole ratio 5.07:1, produced a similar parameterization of d(T). The larger basis vector lengths for this mixture compared to those for DOPE can be attributed to a smaller ratio of v/a, which was also found to be temperature independent for this mixture. The smaller value of v/a is due to the larger effective headgroup area of DOPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
M C Ba?ó  L Braco  C Abad 《FEBS letters》1989,250(1):67-71
A novel HPLC methodology for the study of gramicidin A reconstituted in model membranes has been tested in comparison with circular dichroism data. It is shown that this chromatographic technique not only corroborates most of the recent spectroscopic results but allows one to explain them in terms of mass fractions of different actual conformational species of GA in the phospholipid assemblies. In particular, the dependence of the inserted peptide configuration on the organic solvent and other parameters involved in the 'history' of the sample preparation and handling has been analyzed by HPLC in two phospholipid model systems: small unilamellar vesicles and micelles. Moreover, a slow conformational transition of GA towards a beta 6.3-helical configuration, accelerated by heat incubation, has been also chromatographically visualized and quantitatively interpreted.  相似文献   

17.
The binding of sodium ions to the transmembrane channel peptide gramicidin A has permitted the use of electrospray ionization mass spectrometry to study its conformation in different solvent environments. The mass spectra of the peptide in the various solvents suggest that different conformations of gramicidin A differ in their ability to bind metal ions. The data are consistent with monomeric behavior of gramicidin A in trifluoroethanol and dimethyl sulfoxide solutions, but reveal the presence of noncovalent intermolecular interactions in ethanol solution through the observation of heterodimers formed between the naturally occurring variants of the peptide. The addition of 50% v/v of water to the ethanolic solution causes changes in the circular dichroism spectrum of the peptide, suggestive of a shift in the equilibrium mixture of conformers present toward monomeric species, a result supported by its mass spectrum. The structure of gramicidin A in trifluoroethanol has also been investigated by hydrogen exchange measurements monitored by mass spectrometry. The observation of significant protection against exchange suggests that the monomeric peptide is highly structured in trifluoroethanol. The results indicate that mass spectrometry has the potential to probe the conformational behavior of neutral hydrophobic peptides in environments that mimic their functional states.  相似文献   

18.
The deuterium nuclear magnetic resonance (2H NMR) spectrum of perdeuterated tetradecanol in a mixture of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and water was used to compare the variation of the acyl chain orientational order parameter, S(n), with carbon position, n, in the liquid crystalline lamellar (L alpha) and hexagonal (HII) phases. The characteristics independence of S(n) with n (plateau) normally observed in the L alpha phase is replaced by a more rapid decrease of S(n) with n in the HII phase. It is suggested that as a consequence of the geometrical characteristics of the HII phase, there is an increase in conformational freedom available to different parts of the acyl chain.  相似文献   

19.
Chen Y  Wallace BA 《Biopolymers》1997,42(7):771-781
Solvent effects on the far-uv CD spectra of the polypeptide gramicidin have been studied systematically in a series of alcohols of increasing chain length, ranging from methanol to dodecanol. The effects observed are of two types: primary, involving a change in the equilibrium mixture of conformers present, and secondary, involving a shift in the spectral peak positions as a function of solvent polarizability. To quantitate the primary effect, the ratio of the individual conformers present was estimated by deconvolution of the spectra into their component species. For short chain length alcohols, both parallel and antiparallel double helices are found in considerable abundance. As the solvent chain length is increased and its polarity is decreased, the left-handed antiparallel double helical species is favored. For all alcohols with chain lengths of four or more carbon atoms, the ratio of the conformers present remains relatively constant. To quantitatively examine the secondary effect, the magnitudes of the spectral shifts on the dominant conformer (species 3) have been correlated with the dielectric constants and refractive indices of the solvents, thereby indicating what underlying physical properties are responsible for these shifts. This work thus demonstrates that for gramicidin, a flexible polypeptide, the solvent effects on the CD spectra can be resolved into two types: changes due to the mixture of conformers present and shifts in the spectral characteristics. Both effects need to be considered when interpreting CD spectra in terms of secondary structure for this and other polypeptides in nonaqueous solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号