首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of recombinant of viral and bacterial systems have been engineered as vectors to express foreign genes for vaccination and/or gene therapy. A common problem is the immune response to the vector itself. The presence of anti-vector immune responses may preclude sufficient 'priming' or immunogenicity if pre-existing immune responses are present, or they may impair optimal 'boosting' upon repeated immunization or delivery with the same vector. To circumvent this problem we developed a strategy using different chimeric vectors which share only the expression of common specific antigens desired for immunization. This approach not only has the advantage of avoiding increased anti-vector responses, but allows the use of combinations of vectors which could subsequently present the same or related antigen differently to the immune system as well as at alternative sites to induce the optimal type of immunity against the pathogen of interest.  相似文献   

2.
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.  相似文献   

3.
Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.  相似文献   

4.
The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the field.  相似文献   

5.
Recombinant vesicular stomatitis virus (rVSV) has shown great potential as a new viral vector for vaccination. However, the prototypic rVSV vector described previously was found to be insufficiently attenuated for clinical evaluation when assessed for neurovirulence in nonhuman primates. Here, we describe the attenuation, neurovirulence, and immunogenicity of rVSV vectors expressing human immunodeficiency virus type 1 Gag. These rVSV vectors were attenuated by combinations of the following manipulations: N gene translocations (N4), G gene truncations (CT1 or CT9), noncytopathic M gene mutations (Mncp), and positioning of the gag gene into the first position of the viral genome (gag1). The resulting N4CT1-gag1, N4CT9-gag1, and MncpCT1-gag1 vectors demonstrated dramatically reduced neurovirulence in mice following direct intracranial inoculation. Surprisingly, in spite of a very high level of attenuation, the N4CT1-gag1 and N4CT9-gag1 vectors generated robust Gag-specific immune responses following intramuscular immunization that were equivalent to or greater than immune responses generated by the more virulent prototypic vectors. MncpCT1-gag1 also induced Gag-specific immune responses following intramuscular immunization that were equivalent to immune responses generated by the prototypic rVSV vector. Placement of the gag gene in the first position of the VSV genome was associated with increased in vitro expression of Gag protein, in vivo expression of Gag mRNA, and enhanced immunogenicity of the vector. These findings demonstrate that through directed manipulation of the rVSV genome, vectors that have reduced neurovirulence and enhanced immunogenicity can be made.  相似文献   

6.
Previously we reported the development of a plasmid DNA expression vector system derived from Sindbis virus (T. W. Dubensky, Jr., et al., J. Virol. 70:508–519, 1996). In vitro, such vectors exhibit high-level heterologous gene expression via self-amplifying cytoplasmic RNA replication. In the present study, we demonstrated the in vivo efficacy of the Sindbis virus-based pSIN vectors as DNA vaccines. A single intramuscular immunization of BALB/c mice with pSIN vectors expressing the glycoprotein B of herpes simplex virus type 1 induced a broad spectrum of immune responses, including virus-specific antibodies, cytotoxic T cells, and protection from lethal virus challenge in two different murine models. In addition, dosing studies demonstrated that the pSIN vectors were superior to a conventional plasmid DNA vector in the induction of all immune parameters tested. In general, 100- to 1,000-fold-lower doses of pSIN were needed to induce the same level of responsiveness as that achieved with the conventional plasmid DNA vector. In some instances, significant immune responses were induced with a single dose of pSIN as low as 10 ng/mouse. These results indicate the potential usefulness of alphavirus-based vectors for DNA immunization in general and more specifically as a herpes simplex virus vaccine.  相似文献   

7.
The innate immune pathways that contribute to the potent immunogenicity of recombinant adenovirus (rAd) vaccine vectors remain largely undefined. Previous studies assessing innate immunity triggered by vaccine vectors have largely focused on in vitro studies involving antigen-presenting cells and on early in vivo inflammatory responses. Here, we systematically explore the Toll-like receptor (TLR) signaling requirements for the generation of cellular immune responses by intramuscular immunization with common and alternative serotype rAd vectors in mice. Antigen-specific CD8(+) T-lymphocyte responses elicited by these rAd vectors were significantly diminished in MyD88(-/-) mice but not in TRIF(-/-) or TLR3(-/-) mice, suggesting the importance of MyD88-dependent TLR signaling. However, the absence of each individual TLR resulted in minimal to no effect on vaccine-elicited cellular immune responses. Moreover, responses were not diminished in IL-1R(-/-) or IL-18R(-/-) mice. These data suggest that rAd vectors engage multiple MyD88-dependent signaling pathways, none of which are individually critical; rather, they are integrated to contribute to the potent immunogenicity of rAd vectors. Stimulation of multiple innate immune mechanisms may prove a generalizable property of potent vaccines, and this strategy could be harnessed in the development of next-generation vaccine vectors and adjuvants.  相似文献   

8.
9.
Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.  相似文献   

10.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.  相似文献   

11.
The humoral and CD4+ cellular immune responses in mice following genetic immunization with three retroviral vectors encoding different forms of hepatitis B virus core antigen (HBcAg) and e antigen (HBeAg) were analyzed. The retroviral vectors induced expression of intracellular HBcAg (HBc[3A4]), secreted HBeAg (HBe[5A2]), or an intracellular HBcAg-neomycin phosphoryltransferase fusion protein (HBc-NEO[6A3]). Specific antibody levels and immunoglobulin G isotype restriction were highly dependent on both the host major histocompatibility complex and the transferred gene. Humoral and CD4+ cellular HBcAg and/or HBeAg (HBc/eAg)-specific immune responses following retroviral vector immunization were of a lower magnitude but followed the same characteristics compared with those after immunization with HBc/eAg in adjuvant. Two factors influenced the humoral responses. First, in vivo depletion of CD8+ cells in HBc-NEO[6A3]-immunized H-2k mice abrogated both HBcAg-specific antibodies and in vitro-detectable cytotoxic T lymphocytes. Second, priming of H-2b mice with an HBc/eAg-derived T-helper (Th) peptide in adjuvant prior to retroviral vector immunization greatly enhanced the HBc/eAg-specific humoral responses to all three vectors, suggesting that insufficient HBc/eAg-specific CD4+ Th-cell priming limits the humoral responses. In conclusion, direct injection of retroviral vectors seems to be effective in priming HBc/eAg-specific CD8+ but comparatively inefficient in priming CD4+ Th cells and subsequently specific antibodies. However, the limited HBc/eAg-specific CD4+ cell priming can effectively be circumvented by prior administration of a recombinant or synthetic form of HBc/eAg in adjuvant.  相似文献   

12.
Replication-defective adenovirus (ADV) and poxvirus vectors have shown potential as vaccines for pathogens such as Ebola or human immunodeficiency virus in nonhuman primates, but prior immunity to the viral vector in humans may limit their clinical efficacy. To overcome this limitation, the effect of prior viral exposure on immune responses to Ebola virus glycoprotein (GP), shown previously to protect against lethal hemorrhagic fever in animals, was studied. Prior exposure to ADV substantially reduced the cellular and humoral immune responses to GP expressed by ADV, while exposure to vaccinia inhibited vaccine-induced cellular but not humoral responses to GP expressed by vaccinia. This inhibition was largely overcome by priming with a DNA expression vector before boosting with the viral vector. Though heterologous viral vectors for priming and boosting can also overcome this effect, the paucity of such clinical viral vectors may limit their use. In summary, it is possible to counteract prior viral immunity by priming with a nonviral, DNA vaccine.  相似文献   

13.
Viral vectors provide a convenient means to deliver vaccine antigens to select target cells or tissues. A broad spectrum of replicating and non-replicating vectors is available. An appropriate choice for select applications will depend on the biology of the infectious agent targeted, as well as factors such as whether the vaccine is intended to prevent infection or boost immunity in already infected individuals, prior exposure of the target population to the vector, safety, and the number and size of gene inserts needed. Here several viral vectors under development as HIV/AIDS vaccines are reviewed. A vaccine strategy based on initial priming with a replicating vector to enlist the innate immune system, target mucosal inductive sites, and prime both cellular and humoral systemic and mucosal immune responses is proposed. Subsequently, boosting with a replicating or non-replicating vector and/or protein subunits could lead to induction of necessary levels of protective immunity.  相似文献   

14.
Memory CD8+ T lymphocytes play a central role in protective immunity. In attempt to increase the frequencies of memory CD8+ T cells, repeated immunizations with viral vectors are regularly explored. Lentivectors have emerged as a powerful vaccine modality with relatively low pre-existing and anti-vector immunity, thus, thought to be ideal for boosting memory T cells. Nevertheless, we found that lentivectors elicited diminished secondary T-cell responses that did not exceed those obtained by priming. This was not due to the presence of anti-vector immunity, as limited secondary responses were also observed following heterologous prime-boost immunizations. By dissecting the mechanisms involved in this process, we demonstrate that lentivectors trigger exceptionally slow kinetics of antigen expression, while optimal activation of lentivector-induced T cells relays on durable expression of the antigen. These qualities hamper secondary responses, since lentivector-encoded antigen is rapidly cleared by primary cytotoxic T cells that limit its presentation by dendritic cells. Indeed, blocking antigen clearance by cytotoxic T cells via FTY720 treatment, fully restored antigen presentation. Taken together, while low antigen expression is expected during secondary immunization with any vaccine vector, our results reveal that the intrinsic delayed expression kinetics of lentiviral-encoded antigen, further dampens secondary CD8+ T-cell expansion.  相似文献   

15.
16.
Recombinant viral vectors are promising vaccine tools for eliciting potent cellular immune responses against immunodeficiency virus infection, but pre-existing anti-vector antibodies can be an obstacle to their clinical use in humans. We have previously vaccinated rhesus macaques with a recombinant Sendai virus (SeV) vector twice at an interval of more than 1 year and have shown efficient antigen-specific T-cell induction by the second as well as the first vaccination. Here, we have established the method for measurement of SeV-specific neutralizing titers and have found efficient SeV-specific neutralizing antibody responses just before the second SeV vaccination in these macaques. This suggests the feasibility of inducing antigen-specific T-cell responses by SeV vaccination even in the host with pre-existing anti-SeV neutralizing antibodies.  相似文献   

17.
Immunity elicited by multicomponent vaccines delivered by replication-competent Ad5hr-simian immunodeficiency virus (SIV) recombinants was systematically investigated. Rhesus macaques were immunized mucosally at weeks 0 and 12 with Ad5hr-SIV(smH4) env/rev, with or without Ad5hr-SIV(mac239) gag or Ad5hr-SIV(mac239) nef, or with all three recombinants. The total Ad5hr dosage was comparably adjusted among all animals with empty Ad5hr-DeltaE3 vector. The macaques were boosted with SIV gp120 in monophosphoryl A-stable emulsion adjuvant at 24 and 36 weeks. Controls received Ad5hr-DeltaE3 vector or adjuvant only. By ELISPOT analysis, all four SIV gene products elicited potent cellular immune responses that persisted 42 weeks post-initial immunization. Unexpectedly, modulation of this cellular immune response was observed among macaques receiving one, two, or three Ad5hr-SIV recombinants. Env responses were significantly enhanced throughout the immunization period in macaques immunized with Ad5hr-SIV env/rev plus Ad5hr-SIV gag and tended to be higher in macaques that also received Ad5hr-SIV nef. Macaques primed with all three recombinants displayed significant down-modulation in numbers of gamma interferon (IFN-gamma)-secreting cells specific for SIV Nef, and the Env- and Gag-specific responses were also diminished. Modulation of antibody responses was not observed. Down-modulation was seen only during the period of Ad5hr-recombinant priming, not during subunit boosting, although SIV-specific IFN-gamma-secreting cells persisted. The effect was not attributable to Ad5hr replication differences among immunization groups. Vaccine delivery via replication-competent live vectors, which can persistently infect new cells and continuously present low-level antigen, may be advantageous in overcoming competition among complex immunogens for immune recognition. Effects of current multicomponent vaccines on individual immune responses should be evaluated with regard to future vaccine design.  相似文献   

18.
Wu L  Kong WP  Nabel GJ 《Journal of virology》2005,79(13):8024-8031
A variety of gene-based vaccination approaches have been used to enhance the immune response to viral pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period of time, we asked whether the immune response induced by the prime-boost immunization was different from adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immunization stimulated the CD8 response, it was directed to the same epitopes in Gag and Env immunogens of human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these components work synergistically to enhance T-cell epitope recognition.  相似文献   

19.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

20.
Gene therapy meets vaccine development   总被引:3,自引:0,他引:3  
Therapeutic vaccines such as those used to combat cancer or persistent viral infection are required to reprogramme a downregulated immune system. This presents a difficult challenge for vaccine design and merits the development of novel immunization protocols. Currently, we know that mobilization of dendritic cells (DCs) to present antigens to T lymphocytes is crucial for effective immunization. Our increasing understanding of DC biology, coupled with the growing sophistication of viral vectors developed for gene therapy, makes more rational vaccine design an exciting possibility. Here we propose that engineering viral vectors to express antigens in activated DCs will provide the most effective vaccines for priming an immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号