首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whitlock MC 《Genetics》2003,164(2):767-779
New alleles arising in a population by mutation ultimately are either fixed or lost. Either is possible, for both beneficial and deleterious alleles, because of stochastic changes in allele frequency due to genetic drift. Spatially structured populations differ from unstructured populations in the probability of fixation and the time that this fixation takes. Previous results have generally made many assumptions: that all demes contribute to the next generation in exact proportion to their current sizes, that new mutations are beneficial, and that new alleles have additive effects. In this article these assumptions are relaxed, allowing for an arbitrary distribution among demes of reproductive success, both beneficial and deleterious effects, and arbitrary dominance. The effects of population structure can be expressed with two summary statistics: the effective population size and a variant of Wright's F(ST). In general, the probability of fixation is strongly affected by population structure, as is the expected time to fixation or loss. Population structure changes the effective size of the species, often strongly downward; smaller effective size increases the probability of fixing deleterious alleles and decreases the probability of fixing beneficial alleles. On the other hand, population structure causes an increase in the homozygosity of alleles, which increases the probability of fixing beneficial alleles but somewhat decreases the probability of fixing deleterious alleles. The probability of fixing new beneficial alleles can be simply described by 2hs(1 - F(ST))N(e)/N(tot), where hs is the change in fitness of heterozygotes relative to the ancestral homozygote, F(ST) is a weighted version of Wright's measure of population subdivision, and N(e) and N(tot) are the effective and census sizes, respectively. These results are verified by simulation for a broad range of population structures, including the island model, the stepping-stone model, and a model with extinction and recolonization.  相似文献   

2.
We evaluate the performance of maximum likelihood (ML) analysis of allele frequency data in a linear array of populations. The parameters are a mutation rate and either the dispersal rate in a stepping stone model or a dispersal rate and a scale parameter in a geometric dispersal model. An approximate procedure known as maximum product of approximate conditional (PAC) likelihood is found to perform as well as ML. Mis-specification biases may occur because the importance sampling algorithm is formally defined in term of mutation and migration rates scaled by the total size of the population, and this size may differ widely in the statistical model and in reality. As could be expected, ML generally performs well when the statistical model is correctly specified. Otherwise, mutation rate estimates are much closer to mutation probability scaled by number of demes in the statistical model than scaled by number of demes in reality when mutation probability is high and dispersal is most limited. This mis-specification bias actually has practical benefits. However, opposite results are found in opposite conditions. Migration rate estimates show roughly similar trends, but they may not always be easily interpreted as low-bias estimates of dispersal rate under any scaling. Estimation of the dispersal scale parameter is also affected by mis-specification of the number of demes, and the different biases compensate each other in such a way that good estimation of the so-called neighborhood size (or more precisely the product of population density and mean-squared parent-offspring dispersal distance) is achieved. Results congruent with these findings are found in an application to a damselfly data set.  相似文献   

3.
To a first order of approximation, selection is frequency independent in a wide range of family structured models and in populations following an island model of dispersal, provided the number of families or demes is large and the population is haploid or diploid but allelic effects on phenotype are semidominant. This result underlies the way the evolutionary stability of traits is computed in games with continuous strategy sets. In this paper similar results are derived under isolation by distance. The first-order effect on expected change in allele frequency is given in terms of a measure of local genetic diversity, and of measures of genetic structure which are almost independent of allele frequency in the total population when the number of demes is large. Hence, when the number of demes increases the response to selection becomes of constant sign. This result holds because the relevant neutral measures of population structure converge to equilibrium at a rate faster than the rate of allele frequency changes in the total population. In the same conditions and in the absence of demographic fluctuations, the results also provide a simple way to compute the fixation probability of mutants affecting various ecological traits, such as sex ratio, dispersal, life-history, or cooperation, under isolation by distance. This result is illustrated and tested against simulations for mutants affecting the dispersal probability under a stepping-stone model.  相似文献   

4.
To a first order of approximation, selection is frequency independent in a wide range of family structured models and in populations following an island model of dispersal, provided the number of families or demes is large and the population is haploid or diploid but allelic effects on phenotype are semidominant. This result underlies the way the evolutionary stability of traits is computed in games with continuous strategy sets. In this paper similar results are derived under isolation by distance. The first-order effect on expected change in allele frequency is given in terms of a measure of local genetic diversity, and of measures of genetic structure which are almost independent of allele frequency in the total population when the number of demes is large. Hence, when the number of demes increases the response to selection becomes of constant sign. This result holds because the relevant neutral measures of population structure converge to equilibrium at a rate faster than the rate of allele frequency changes in the total population. In the same conditions and in the absence of demographic fluctuations, the results also provide a simple way to compute the fixation probability of mutants affecting various ecological traits, such as sex ratio, dispersal, life-history, or cooperation, under isolation by distance. This result is illustrated and tested against simulations for mutants affecting the dispersal probability under a stepping-stone model.  相似文献   

5.
The effect of population structure on the probability of fixation of a newly introduced mutant under weak selection is studied using a coalescent approach. Wright's island model in a framework of a finite number of demes is assumed and two selection regimes are considered: a beneficial allele model and a linear game among offspring. A first-order approximation of the fixation probability for a single mutant with respect to the intensity of selection is deduced. The approximation requires the calculation of expected coalescence times, under neutrality, for lineages starting from two or three sampled individuals. The results are obtained in a general setting without assumptions on the number of demes, the deme size or the migration rate, which allows for simultaneous coalescence or migration events in the genealogy of the sampled individuals. Comparisons are made with limit cases as the deme size or the number of demes goes to infinity or the migration rate goes to zero for which a diffusion approximation approach is possible. Conditions for selection to favor a mutant strategy replacing a resident strategy in the context of a linear game in a finite island population are addressed.  相似文献   

6.
We investigate the probability of fixation of a chromosome rearrangement in a subdivided population, concentrating on the limit where migration is so large relative to selection (m ? s) that the population can be thought of as being continuously distributed. We study two demes, and one- and two-dimensional populations. For two demes, the probability of fixation in the limit of high migration approximates that of a population with twice the size of a single deme: migration therefore greatly reduces the fixation probability. However, this behavior does not extend to a large array of demes. Then, the fixation probability depends primarily on neighborhood size (Nb), and may be appreciable even with strong selection and free gene flow (≈exp(-B ≈ Nbs) in one dimension, ≈exp(-B ≈ Nb) in two dimensions). Our results are close to those for the more tractable case of a polygenic character under disruptive selection.  相似文献   

7.
Events that occur during the pelagic larval stage are thought to be important determinants of reef fish population dynamics. Recent research contradicts the early paradigm of larvae being advected as passive propagules and indicates that many late stage larvae have well-developed sensory and locomotory capabilities. Whether and how larvae use these capabilities to influence their dispersal is unknown. We compare alternative hypotheses regarding larval behavior. Contrary to the trend in dispersal modeling, we focus on larval biology rather than physical oceanographic considerations. Specifically, we present two streams of models: one that describes a return-based strategy and one in which dispersal is a central component. The models depend on different sets of behavioral assumptions for a pomacentrid species and for acanthurids, two groups with contrasting early life histories. Whether dispersal or return-based strategies are favored depends on the efficiency and sustainability of larval swimming methods and the environmental conditions experienced during dispersal. We argue that dispersal models should consider a variety of behavioral hypotheses and that the sensitivity of results to the behavioral assumptions made should be quantified.  相似文献   

8.
N. Takahata 《Genetics》1991,129(2):585-595
In a geographically structured population, the interplay among gene migration, genetic drift and natural selection raises intriguing evolutionary problems, but the rigorous mathematical treatment is often very difficult. Therefore several approximate formulas were developed concerning the coalescence process of neutral genes and the fixation process of selected mutations in an island model, and their accuracy was examined by computer simulation. When migration is limited, the coalescence (or divergence) time for sampled neutral genes can be described by the convolution of exponential functions, as in a panmictic population, but it is determined mainly by migration rate and the number of demes from which the sample is taken. This time can be much longer than that in a panmictic population with the same number of breeding individuals. For a selected mutation, the spreading over the entire population was formulated as a birth and death process, in which the fixation probability within a deme plays a key role. With limited amounts of migration, even advantageous mutations take a large number of generations to spread. Furthermore, it is likely that these mutations which are temporarily fixed in some demes may be swamped out again by non-mutant immigrants from other demes unless selection is strong enough. These results are potentially useful for testing quantitatively various hypotheses that have been proposed for the origin of modern human populations.  相似文献   

9.
Using a computational model for the population growth and dispersal of a model species in a fluctuating environment, we test three nature reserve geometries (one large, many small, and a self-similar distribution of reserve sizes) to determine which geometry maximizes species longevity. The self-similar distribution is a close approximation to the distribution of managed areas in the conterminous United States. We consider models with and without migration from or between reserve fragments and both short- and long-range dispersal mechanisms. The optimal geometry depends on the type of dispersal and on the relative probability of survival in protected and non-protected areas. When no migration is allowed from or between reserve fragments of the three geometries, many small equally sized reserves are the optimal geometry. When migration is allowed, the optimal geometry is a single large reserve when the survivability in non-protected areas is low and a self-similar distribution when the survivability is high.  相似文献   

10.
A simple genealogical structure is found for a general finite island model of population subdivision. The model allows for variation in the sizes of demes, in contributions to the migrant pool, and in the fraction of each deme that is replaced by migrants every generation. The ancestry of a sample of non-recombining DNA sequences has a simple structure when the sample size is much smaller than the total number of demes in the population. This allows an expression for the probability distribution of the number of segregating sites in the sample to be derived under the infinite-sites mutation model. It also yields easily computed estimators of the migration parameter for each deme in a multi-deme sample. The genealogical process is such that the lineages ancestral to the sample tend to accumulate in demes with low migration rates and/or which contribute disproportionately to the migrant pool. In addition, common ancestor or coalescent events tend to occur in demes of small size. This provides a framework for understanding the determinants of the effective size of the population, and leads to an expression for the probability that the root of a genealogy occurs in a particular geographic region, or among a particular set of demes.  相似文献   

11.
For two genotypes that have the same mean number of offspring but differ in the variance in offspring number, naturalselection will favor the genotype with lower variance. In such cases, the average growth rate is not sufficient as a measure of fitness or as a predictor of fixation probability. However, the effect of variance in offspring number on the fixationprobability of mutant strategies has been calculated under several scenarios with the general conclusion that variance in offspring number reduces fitness in proportion to the inverse of the population size [Gillespie, J., Genetics 76:601–606, 1974; Proulx, S.R., Theor. Popul. Biol. 58:33–47, 2000]. This relationship becomes more complicated under a metapopulation scenario where the “effective” population size depends on migration rate, population structure, and lifecycle. It is shown that in a life cycle where reproduction and migration (the birth-migration-regulation life cycle, or BMR)occur prior to density regulation within every deme, the fitness of a strategy depends on migration rate. When migration rates are near zero, the fitness of the strategy is determined by the size of individual demes, so that the strategy favoredin small populations tends to be fixed. As migration rate increases and approaches panmixis between demes, the fitness ofa reproductive strategy approaches what its value would be in a single, panmictic deme with a population size correspondingtothe census size of the metapopulation. Interestingly, when the life cycle is characterized by having density regulation in each deme prior to migration (the BRM life cycle) the fixation probability of a strategy is independent of migration rate. These results are found to be qualitatively consistent with the individual-based simulation results in Shpak [Theor. Biosci.124:65–85, 2005]. An erratum to this article can be found at  相似文献   

12.
Determining how population subdivision increases the fixation time of an advantageous allele is an important problem in evolutionary genetics as this influences many processes. Here, I lay out a framework for calculating the fixation time of a positively selected allele in a subdivided population, as a function of the number of demes present, the migration rate between them and the manner in which they are connected. Using this framework, it becomes clear that a beneficial allele's fixation time is significantly reduced through migration continuously introducing copies of the allele into a newly colonized subpopulation, increasing its frequency within these demes. The effect that migration has on allele frequency needs to be explicitly taken into account to produce a realistic estimate of fixation time. This behaviour is most prominent when demes are arranged on a two-dimensional torus, in comparison with populations where demes are arranged in a circle. This is because each subpopulation is connected to several neighbours over a torus, so that there are multiple paths that an allele can take in order to fix. As a consequence, some demes experience a greater influx and efflux of migrants than others. Analytical results are found to be very accurate when compared to stochastic simulations, and are generally robust if there are a large number of demes, or if the allele is weakly selected for.  相似文献   

13.
A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in statistical equilibrium with respect to migration and drift for a given allele frequency in the total population. Selection is assumed to be weak, in inverse proportion to the number of demes, and the results hold for any deme sizes and migration rates greater than zero. The distribution of allele frequencies among demes is also described.  相似文献   

14.
Many species persist as a metapopulation under a balance between the local extinction of subpopulations or demes and their recolonization through dispersal from occupied patches. Here we review the growing body of literature dealing with the genetic consequences of such population turnover. We focus our attention principally on theoretical studies of a classical metapopulation with a 'finite-island' model of population structure, rather than on 'continent-island' models or 'source-sink' models. In particular, we concern ourselves with the subset of geographically subdivided population models in which it is assumed that all demes are liable to extinction from time to time and that all demes receive immigrants. Early studies of the genetic effects of population turnover focused on population differentiation, such as measured by F(ST). A key advantage of F(ST) over absolute measures of diversity is its relative independence of the mutation process, so that different genes in the same species may be compared. Another advantage is that F(ST) will usually equilibrate more quickly following perturbations than will absolute levels of diversity. However, because F(ST) is a ratio of between-population differentiation to total diversity, the genetic effects of metapopulation processes may be difficult to interpret in terms of F(ST) on its own, so that the analysis of absolute measures of diversity in addition is likely to be informative. While population turnover may either increase or decrease F(ST), depending on the mode of colonization, recurrent extinction and recolonization is expected always to reduce levels of both within-population and species-wide diversity (piS and piT, respectively). One corollary of this is that piS cannot be used as an unbiased estimate of the scaled mutation rate, theta, as it can, with some assumptions about the migration process, in species whose demes do not fluctuate in size. The reduction of piT in response to population turnover reflects shortened mean coalescent times, although the distribution of coalescence times under extinction colonization equilibrium is not yet known. Finally, we review current understanding of the effect of metapopulation dynamics on the effective population size.  相似文献   

15.
We expand a coalescent-based method that uses serially sampled genetic data from a subdivided population to incorporate changes to the number of demes and patterns of colonization. Often, when estimating population parameters or other parameters of interest from genetic data, the demographic structure and parameters are not constant over evolutionary time. In this paper, we develop a Bayesian Markov chain Monte Carlo method that allows for step changes in mutation, migration, and population sizes, as well as changing numbers of demes, where the times of these changes are also estimated. We show that in parameter ranges of interest, reliable estimates can often be obtained, including the historical times of parameter changes. However, posterior densities of migration rates can be quite diffuse and estimators somewhat biased, as reported by other authors.  相似文献   

16.
An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum.  相似文献   

17.
Cutter AD  Wang GX  Ai H  Peng Y 《Molecular ecology》2012,21(6):1345-1359
Molecular hyperdiversity has been documented in viruses, prokaryotes and eukaryotes. Such organisms undermine the assumptions of the infinite-sites mutational model, because multiple mutational events at a site comprise a non-negligible portion of polymorphisms. Moreover, different sampling schemes of individuals from species with subdivided populations can profoundly influence resulting patterns and interpretations of molecular variation. Inspired by molecular hyperdiversity in the nematode Caenorhabditis sp. 5, which exhibits average pairwise differences among synonymous sites of >5% as well as modest population structure, we investigated via coalescent simulation the joint effects of a finite-sites mutation (FSM) process and population subdivision on the variant frequency spectrum. From many demes interconnected through a stepping-stone migration model, we constructed local samples from a single deme, pooled samples from several demes and scattered samples of a single individual from numerous demes. Compared with a single panmictic population at equilibrium, we find that high population mutation rates induce a deficit of rare variants (positive Tajima's D) under a FSM model. Population structure also induces such a skew for local samples when migration is high and for pooled samples when migration is low. Contrasts of sampling schemes for C. sp. 5 imply high mutational input coupled with high migration. We propose that joint analysis of local, pooled and scattered samples for species with subdivided populations provides a means of improving inference of demographic history, by virtue of the partially distinct patterns of polymorphism that manifest when sequences are analyzed according to differing sampling schemes.  相似文献   

18.
Migration dynamics for the ideal free distribution   总被引:1,自引:0,他引:1  
This article verifies that the ideal free distribution (IFD) is evolutionarily stable, provided the payoff in each patch decreases with an increasing number of individuals. General frequency-dependent models of migratory dynamics that differ in the degree of animal omniscience are then developed. These models do not exclude migration at the IFD where balanced dispersal emerges. It is shown that the population distribution converges to the IFD even when animals are nonideal (i.e., they do not know the quality of all patches). In particular, the IFD emerges when animals never migrate from patches with a higher payoff to patches with a lower payoff and when some animals always migrate to the best patch. It is shown that some random migration does not necessarily lead to undermatching, provided migration occurs at the IFD. The effect of population dynamics on the IFD (and vice versa) is analyzed. Without any migration, it is shown that population dynamics alone drive the population distribution to the IFD. If animal migration tends (for each fixed population size) to the IFD, then the combined migration-population dynamics evolve to the population IFD independent of the two timescales (i.e., behavioral vs. population).  相似文献   

19.
In connectivity models, land cover types are assigned cost values characterizing their resistance to species movements. Landscape genetic methods infer these values from the relationship between genetic differentiation and cost distances. The spatial heterogeneity of population sizes, and consequently genetic drift, is rarely included in this inference although it influences genetic differentiation. Similarly, migration rates and population spatial distributions potentially influence this inference. Here, we assessed the reliability of cost value inference under several migration rates, population spatial patterns and degrees of population size heterogeneity. Additionally, we assessed whether considering intra-population variables, here using gravity models, improved the inference when drift is spatially heterogeneous. We simulated several gene flow intensities between populations with varying local sizes and spatial distributions. We then fit gravity models of genetic distances as a function of (i) the ‘true’ cost distances driving simulations or alternative cost distances, and (ii) intra-population variables (population sizes, patch areas). We determined the conditions making the identification of the ‘true’ costs possible and assessed the contribution of intra-population variables to this objective. Overall, the inference ranked cost scenarios reliably in terms of similarity with the ‘true’ scenario (cost distance Mantel correlations), but this ‘true’ scenario rarely provided the best model goodness of fit. Ranking inaccuracies and failures to identify the ‘true’ scenario were more pronounced when migration was very restricted (<4 dispersal events/generation), population sizes were most heterogeneous and some populations were spatially aggregated. In these situations, considering intra-population variables helps identify cost scenarios reliably, thereby improving cost value inference from genetic data.  相似文献   

20.
We present a general model of the evolution of dispersal in a population with any distribution of dispersal distance. We use this model to analyse evolutionarily stable (ES) dispersal rates for the classical island model of dispersal and for three different stepping-stone models. Using general techniques to compute relatedness coefficients in the different dispersal models which we consider, we find that the distribution of dispersal distance may affect the ES dispersal rate when the cost of dispersal is low. In this case the ES dispersal rate increases with the number of demes that can be reached by one dispersal event. However, for increasing cost the ES dispersal rate converges to a value independent of the distribution of dispersal distance. These results are in contrast to previous analyses of similar models. The effects of the size (number of demes) and shape (ratio between the width and the length) of the population on the evolution of dispersal are also studied. We find that larger and more elongated populations lead generally to higher ES dispersal rates. However, both of these effects can only be observed for extreme parameter values (i.e. for very small and very elongated populations). The direct fitness method and the analytical techniques used here to compute relatedness coefficients provide an efficient way to analyse ES strategies in subdivided populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号