首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The muscle wound healing occurs in three overlapping phases: (1) degeneration and inflammation, (2) muscle regeneration, and (3) fibrosis. Simultaneously to injury cellular infiltration by neutrophils and macrophages occur, as well as cellular ‘respiratory burst’ via activation of the enzyme NADPH oxidase. When skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle, divide, differentiate and fuse with muscle fibers to repair damaged regions and to enhance hypertrophy of muscle fibers. This process depends on nitric oxide (NO) production, metalloproteinase (MMP) activation and release of hepatocyte growth factor (HGF) from the extracellular matrix. Generation of a fibrotic scar tissue, with partial loss of function, can also occur, and seems to be dependent, at least in part, on local TGF-β expression, which can be downregulated by NO. Hence, regeneration the muscle depends on the type and severity of the injury, the appropriate inflammatory response and on the balance of the processes of remodeling and fibrosis. It appears that in all these phases NO exerts a significant role. Better comprehension of this role, as well as of the participation of other important mediators, may lead to development of new treatment strategies trying to tip the balance in favor of greater regeneration over fibrosis, resulting in better functional recovery.  相似文献   

2.
Nitric oxide (NO*) is a multifunctional messenger molecule generated by a family of enzymes called the nitric oxide synthases (NOSs). Although NOSs have been identified in skeletal muscle, specifically brain NOS (bNOS) and endothelial NOS (eNOS), their role has not been well clarified. The goals of this investigation were to (1) characterize the immunoreactivity, Ca(2+) dependence, and activity of NOS in human and rat skeletal muscle and (2) using a rat model, investigate the effect of chronic blockade of NOS on skeletal muscle structure and function. Our results showed that both human and rodent skeletal muscle had NOS activity. This NOS activity was similar to that of the endothelial and brain NOS isoforms in that it was calcium-dependent. However, Western blot analysis consistently showed that a polyclonal antibody raised against a peptide sequence of human inducible NOS (iNOS) reacted with a protein with a molecular weight (95 kDa) that was different from that of other NOS isoforms. RT-PCR analysis identified the mRNA expression of not only eNOS and bNOS but also iNOS in human and rat muscle. Inhibition of nitric oxide synthase in rats with N(omega)-nitro-L-arginine methyl ester (L-NAME) resulted in a progressive, severe reduction in walking speed (30-fold reduction in walking velocity at day 22, P < 0.001), muscle fiber cross-sectional area (40% reduction at day 22, P < 0.001), and muscle mass (40% reduction in dry weight at day 22, P < 0.01). Rats fed the same regimen of the enantiomer of L-NAME (d-NAME) had normal motor function, muscle fiber morphology, and muscle mass. Taken together, these results imply that there may be a novel nitric oxide synthase in muscle and that NO. generated from muscle may be important in muscle function.  相似文献   

3.
The involvement of nitric oxide in ischemia-reperfusion injury remains controversial and has been reported to be both beneficial and deleterious, depending on the tissue and model used. This study evaluated the effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) and the substrate for nitric oxide synthase, L-arginine on skeletal muscle necrosis in a rat model of ischemia-reperfusion injury. The rectus femoris muscle in male Wistar rats (250 to 500 g) was isolated on its vascular pedicle and subjected to 4 hours of complete arteriovenous occlusion. The animals were divided into five groups: (1) sham-raised control, no ischemia, no treatment (n = 6); (2) 4 hours of ischemia (n = 6); (3) vehicle control, 4 hours of ischemia + saline (n = 6); (4) 4 hours of ischemia + L-arginine infusion (n = 6); and (5) 4 hours of ischemia + L-NAME infusion (n = 6). The infusions (10 mg/kg) were administered into the contralateral femoral vein beginning 5 minutes before reperfusion and during the following 30 to 45 minutes. Upon reperfusion, the muscle was sutured in its anatomic position and all wounds were closed. The percentage of muscle necrosis was assessed after 24 hours of reperfusion by serial transections, nitroblue tetrazolium staining, digital photography, and computerized planimetry. Sham (group 1) animals sustained baseline necrosis of 11.9 +/- 3.0 (percentage necrosis +/- SEM). Four hours of ischemia (group 2) significantly increased necrosis to 79.2 +/- 1.4 (p < 0.01). Vehicle control (group 3) had no significant difference in necrosis (81.17 +/- 5.0) versus untreated animals subjected to 4 hours of ischemia (group 2). Animals treated with L-arginine (group 4) had significantly reduced necrosis to 34.6 +/- 7.5 versus untreated (group 2) animals (p < 0.01). Animals infused with L-NAME (group 5) had no significant difference in necrosis (68.2 +/- 6.7) versus untreated (group 2) animals. L-Arginine (nitric oxide donor) significantly decreased the severity of muscle necrosis in this rat model of ischemia-reperfusion injury. L-arginine is known to increase the amount of nitric oxide through the action of nitric oxide synthase, whereas L-NAME, known to inhibit nitric oxide synthase and decrease nitric oxide production, had comparable results to the untreated 4-hour ischemia group. These results suggest that L-arginine, presumably through nitric oxide mediation, appears beneficial to rat skeletal muscle subjected to ischemia-reperfusion injury.  相似文献   

4.
The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no l-NAME ingestion and acute exercise, rest plus l-NAME, and rest without l-NAME. The exercised rats ran on a treadmill for 53 +/- 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.  相似文献   

5.
To study the role of nitric oxide (NO) in regulating oxygen consumption by vessel walls, the oxygen consumption rate of arteriolar walls in rat cremaster muscle was measured in vivo during flow-induced vasodilation and after inhibiting NO synthesis. The oxygen consumption rate of arteriolar walls was calculated based on the intra- and perivascular PO2 values measured by phosphorescence quenching laser microscopy. The perivascular PO2 value of the arterioles during vasodilation was significantly higher than under control conditions, although the intravascular PO2 values under both conditions were approximately the same. Inhibition of NO synthesis, on the other hand, caused a significant increase in arterial blood pressure and a significant decrease in arteriolar diameter. Inhibition of NO synthesis also caused a significant decrease in both the intra- and perivascular PO2 values of the arterioles. Inhibition of NO synthesis increased the oxygen consumption rate of the vessel walls by 42%, whereas enhancement of flow-induced NO release decreased it by 34%. These results suggest that NO plays an important role not only as a regulator of peripheral vascular tone but also as a modulator of tissue oxygenation by reducing oxygen consumption by vessel walls. In addition, enhancement of NO release during exercise may facilitate efficient oxygen supply to the surrounding high metabolic tissue.  相似文献   

6.
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.  相似文献   

7.
The involvement of nitric oxide (*NO) in oxidative stress in the rat gastrocnemius muscle subjected to ischemia/reperfusion injury was investigated using a specific and sensitive chemiluminescence (CL) method for measurement of both membrane lipid peroxide and total tissue antioxidant capacity (TRAP). In addition, inhibitors of nitric oxide synthase enzymes were used. The CL time-course curve increased dramatically after 1, 2, and 4 h of reperfusion, reaching values about 12 times higher than those of both control and ischemic rats. Initial velocity (V0) increased from 13.6 cpm mg protein(-1) min(-1) in the ischemic group, to 7341-8524 cpm mg protein(-1) min(-1) following reperfusion. The administration of L-NAME prior to reperfusion significantly reduced (p<0.007) the time-course of the CL curve, decreasing the V(0) value by 51% and preventing antioxidant consumption for 1h following reperfusion. No significant change in CL time-course curve and TRAP values were observed with aminoguanidine treatment. On contrary, after 4h following reperfusion, pre treatment with aminoguanidine led to a significant decrease (p < 0.0001) in the time-course of the CL curve, where V0 decreased by 75% and TRAP returned to control levels. No significant change in CL time-course curve and TRAP values were observed with L-NAME treatment. When RT-PCR was carried out with an iNOS-specific primer, a single band was detected in RNA extracted from muscle tissue of only the 4 h ischemia/4 h reperfusion group. No bands were found in either the control, 4 h ischemia or 4 h ischemia/1 h reperfusion groups. Based on these results, we conclude that *NO plays an important role in oxidative stress injury, possibly via -ONOO, in skeletal muscle subjected to ischemia/reperfusion. Our results also show that cNOS isoenzymes are preferentially involved in *NO generation at the beginning of reperfusion and that iNOS isoenzyme plays an important role in reperfusion injury producing *NO later in the process.  相似文献   

8.
Inducible nitric oxide synthase (iNOS) participates in many pathological events, and selective inhibition of iNOS has been shown to reduce ischemia-reperfusion (I/R) injury in different tissues. To further confirm its role in this injury process, I/R injury was observed in denervated cremaster muscles of iNOS-deficient (iNOS-/-) and wild-type mice. After 3-h ischemia and 90-min reperfusion, blood flow in reperfused muscle was 80 +/- 8.5% (mean +/- SE) of baseline at 10-min reperfusion and completely returned to the preischemia baseline after 20 min in iNOS-/- mice. In contrast, blood flow was 32 +/- 7.4% at 10 min and increased to 60 +/- 20% of the baseline level at 90 min in wild-type mice (P < 0.001 vs. iNOS-/- mice at all time points). The increased muscle blood flow in iNOS-/- mice was associated with significantly less vasospasm in all three sizes of arterial vessel size categories. The weight ratio to the contralateral muscle not subjected to I/R was greater in wild-type mice (173 +/- 11%) than in iNOS-/- mice (117 +/- 3%; P < 0.01). Inflammation and neutrophil extravasation were also more severe in wild-type mice. Western blot analysis demonstrated an absence of iNOS protein band in iNOS-/- mice and upregulation of iNOS protein expression in wild-type mice. Our results confirm the importance of iNOS in I/R injury. Upregulated iNOS exacerbates I/R injury and appears to be a therapeutic target in protection of tissues against this type of injury.  相似文献   

9.
Extraocular muscles (EOMs) are specialized skeletal muscles that are constantly active, generate low levels of force for cross sectional area, have rapid contractile speeds, and are highly fatigue resistant. The neuronal isoform of nitric oxide synthase (nNOS) is concentrated at the sarcolemma of fast-twitch muscles fibers, and nitric oxide (NO) modulates contractility. This study evaluated nNOS expression in EOM and the effect of NO modulation on lateral rectus muscle's contractility. nNOS activity was highest in EOM compared with diaphragm, extensor digitorum longus, and soleus. Neuronal NOS was concentrated to the sarcolemma of orbital and global singly innervated fibers, but not evident in the multi-innervated fibers. The NG-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor), increased submaximal tetanic and peak twitch forces. The NO donors S-nitroso-N-acetylcysteine (SNAC) and spermineNONOate reduced submaximal tetanic and peak twitch forces. The effect of NO on the contractile force of lateral rectus muscle is greater than previously observed on other skeletal muscle. NO appears more important in modulating contraction of EOM compared with other skeletal muscles, which could be important for the EOM's specialized role in generation of eye movements.  相似文献   

10.
Interferon (IFN)-gamma inhibited the proliferation of rat vascular smooth muscle cells (VSMC) and increased the cyclic GMP (cGMP) concentration in the cells. The dose dependencies of the two effects were similar (IC50 = 4 U/ml for the anti-proliferation and EC50 = 3 U/ml for cGMP formation) and the effect of IFN-gamma was enhanced by tumor necrosis factor-alpha treatment. Furthermore, NG-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor, inhibited both activities induced by IFN-gamma. These findings show that the anti-proliferation and cGMP formation are closely related and that IFN-gamma inhibits the proliferation of rat VSMC by generation of NO through the induction of an NO synthase.  相似文献   

11.
Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats   总被引:6,自引:0,他引:6  
Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R.  相似文献   

12.
Nitric oxide (NO), a radical gas, acts as a multifunctional intra- and intercellular messenger. In the present study we investigated the effects of NO on muscle membrane potassium currents of isolated single muscle fibers from the marine isopods, Idotea baltica, using two-electrode voltage clamp recording techniques. Voltage-activated potassium currents consist of an outward current with fast activation and inactivation kinetics and a delayed, persistent outward current. Both currents were blocked by extracellular 4-aminopyridine and tetraethylammonium; the currents were not blocked by charybdotoxin or apamin. Application of the NO donors S-nitroso-N-acetylpenicillamine (SNAP) or hydroxylamine increased both the early and the delayed outward current in a dose- and time-dependent manner. PTIO, a NO scavenger, suppressed the effect of SNAP. N-Acetyl-dl-penicillamine, a related control compound which does not liberate NO, had no significant effect on outward currents. Methylene blue, a guanylyl cyclase inhibitor, prevented the increase of the outward current while 8-bromo-cGMP increased the current. Our experiments show that potassium currents of Idotea muscle are increased by NO donors. They suggest that NO by stimulating cGMP production mediates the effects on membrane currents involved in regulation of invertebrate muscle excitability.  相似文献   

13.
Impaired vascular responsiveness in sepsis may lead to maldistribution of blood flow in organs. We hypothesized that increased production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) mediates the impaired dilation to ACh in sepsis. Using a 24-h cecal ligation and perforation (CLP) model of sepsis, we measured changes in arteriolar diameter and in red blood cell velocity (V(RBC)) in a capillary fed by the arteriole, following application of ACh to terminal arterioles of rat hindlimb muscle. Sepsis attenuated both ACh-stimulated dilation and V(RBC) increase. In control rats, arteriolar pretreatment with the NO donors S-nitroso-N-acetylpenicillamine or sodium nitroprusside reduced diameter and V(RBC) responses to a level that mimicked sepsis. In septic rats, arteriolar pretreatment with the "selective" iNOS blockers aminoguanidine (AG) or S-methylisothiourea sulfate (SMT) restored the responses to the control level. The putative neuronal NOS (nNOS) inhibitor 7-nitroindazole also restored the response toward control. At 24-h post-CLP, muscles showed no reduction of endothelial NOS (eNOS), elevation of nNOS, and, surprisingly, no induction of iNOS protein; calcium-dependent constitutive NOS (eNOS+nNOS) enzyme activity was increased whereas calcium-independent iNOS activity was negligible. We conclude that 1) AG and SMT inhibit nNOS activity in septic skeletal muscle, 2) NO could impair vasodilative responses in control and septic rats, and 3) the source of increased endogenous NO in septic muscle is likely upregulated nNOS rather than iNOS. Thus agents released from the blood vessel milieu (e.g., NO produced by skeletal muscle nNOS) could affect vascular responsiveness.  相似文献   

14.
15.
We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluorescein) were used to detect H(2)O(2) and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p <.05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p <.05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p <.05). Intense electrical stimulation also increased (p <.05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N(G)-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H(2)O(2) and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H(2)O(2) and NO may constitute an important defense mechanism against the formation of intracellular (*)OH and (*)ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures.  相似文献   

16.
The role of TNF-alpha in the control of mycobacterial growth in murine macrophages was studied in vitro. Infection of macrophages from TNF-alpha gene disrupted (TNF-knockout (KO)) mice with recombinant Mycobacterium bovis bacillus Calmette Guérin (BCG) expressing the vector only (BCG-vector) resulted in logarithmic growth of the intracellular bacilli. Infection with BCG-secreting murine TNF-alpha (BCG-TNF) led to bacillary killing. Killing of BCG-TNF was associated with rapid accumulation of inducible NO synthase (iNOS) protein and the production of nitrite. The uncontrolled growth of BCG-vector was associated with low iNOS expression but no nitrite production. Thus, iNOS expression appears to be TNF-alpha independent but iNOS generation of NO requires TNF-alpha. In cultures of TNF-KO macrophages infected with BCG-TNF, inhibition of iNOS by aminoguanidine (AMG) abolished the killing of the bacilli. However, the growth of the organisms was still inhibited, suggesting an iNOS-independent TNF-alpha-mediated growth inhibition. To confirm this, macrophages from iNOS-KO mice were infected with either BCG-vector or BCG-TNF. As expected, no nitrite was detected in the culture medium. TNF-alpha was detected only when the cells were infected with BCG-TNF. In the iNOS-KO macrophages, the growth of BCG was inhibited only in the BCG-TNF infection. These results suggest that in the absence of iNOS activity, TNF-alpha stimulates macrophages to control the growth of intracellular BCG. Thus, there appears to be both a TNF-alpha-dependent-iNOS-dependent killing pathway as well as a TNF-alpha-dependent-iNOS-independent growth inhibitory pathway for the control of intracellular mycobacteria in murine macrophages.  相似文献   

17.
We tested the hypothesis that nitric oxide caninhibit cytoskeletal breakdown in skeletal muscle cells by inhibitingcalpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore onC2C12 muscle cells, including preventing talinproteolysis and release into the cytosol and reducing loss of vinculin,cell detachment, and loss of cellular protein. These results indicatethat nitric oxide inhibition of calpain protected the cells fromionophore-induced proteolysis. Calpain inhibitor I and a cell-permeablecalpastatin peptide also protected the cells from proteolysis,confirming that ionophore-induced proteolysis was primarily calpainmediated. The activity of m-calpain in a casein zymogram was inhibitedby sodium nitroprusside, and this inhibition was reversed bydithiothreitol. Previous incubation with the active site-targetedcalpain inhibitor I prevented most of the sodium nitroprusside-inducedinhibition of m-calpain activity. These data suggest that nitric oxideinhibited m-calpain activity via S-nitrosylation of the active sitecysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  相似文献   

18.
19.
The purpose of this study was to determine the necessity of nitric oxide (NO) for hypertrophy and fiber-type transition in overloaded (OL) skeletal muscle. Endogenous NO production was blocked by administering N(G)-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/ml; approximately 100 mg x kg-1 x day-1) in drinking water. Thirty-eight female Sprague-Dawley rats (approximately 250 g) were randomly divided into four groups: control-nonoverloaded (Non-OL), control-OL, L-NAME-Non-OL, and L-NAME-OL. Chronic overload of the plantaris was induced bilaterally by surgical removal of the gastrocnemius and soleus. Rats in the Non-OL groups received sham surgeries. L-NAME treatment began 24 h before surgery and continued until the rats were killed 14 days postsurgery. Although OL induced hypertrophy in both control (+76%) and L-NAME (+39%) conditions (P < 0.05), mean plantaris-to-body mass ratio in the L-NAME-OL group was significantly lower (P < 0.05) than that in the control-OL group. Microphotometric analysis of histochemically determined fiber types revealed increases in cross-sectional area (P < 0.05) for all fiber types (types I, IIA, and IIB/X) in the OL plantaris from control rats, whereas L-NAME-OL rats exhibited increases only in type I and IIB/X fibers. SDS-PAGE analysis of myosin heavy chain (MHC) composition in the plantaris indicated a significant (P < 0.05) OL effect in the control rats. Specifically, the mean proportion of type I MHC increased 6% (P < 0.05), whereas the proportion of type IIb MHC decreased approximately 9% (P < 0.05). No significant OL effects on MHC profile were observed in the L-NAME rats. These data support a role of NO in overload-induced skeletal muscle hypertrophy and fiber-type transition.  相似文献   

20.
We describe here a fluorescence assay for nitric oxide synthase activity in skeletal muscle based on a new indicator, 4,5-diaminofluorescein (DAF-2). The rapid and irreversible binding of DAF-2 to oxidized NO allows real-time measurement of NO production. The method is safer and more convenient than the usual citrulline radioassay and can be used with crude muscle extracts. Rabbit fast tibialis anterior (TA) muscle had a nitric oxide synthase (NOS) activity of 44.3 +/- 3.5 pmol/min/mg muscle. Addition of NOS blocker N(G)-allyl-L-arginine reduced this activity by 43%. Slow soleus muscle displayed NOS activity of 7.3 +/- 2.5 pmol/min/mg muscle, 16% that of the TA muscle. Continuous stimulation of TA muscle at 10 Hz for 3 weeks reduced NOS activity by 47% to an intermediate value consistent with the associated conversion of the muscle phenotype from fast to slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号