首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductive and oxidative biosynthesis of plasmalogens in myelinating brain   总被引:2,自引:0,他引:2  
Palmitic acid-1-(14)C and hexadecanol-1-(14)C were administered intracerebrally to 18-day-old rats. Incorporation of radioactivity into the constituent alkyl, alk-1-enyl, and 1-acyl moieties, as well as into the 2-acyl moieties, of the ethanolamine phosphatides of brain was determined after 1, 2, 3, 6, and 22 hr. Incorporation of radioactivity from hexadecanol into both alkyl ethers and alk-1-enyl ethers proceeded at a rate more than 10 times higher than from palmitic acid. Hexadecanol was rapidly oxidized to fatty acids which were incorporated into the acyl moieties of the ethanolamine phosphatides. When palmitic acid was used as a precursor, labeled long-chain alcohols could be isolated from the lipid extract. As labeled long-chain aldehydes could not be detected in any of the lipid extracts, alcohols appear to be key intermediates for the biosynthesis of both alkyl and alk-1-enyl glycerophosphatides.  相似文献   

2.
Dietary long-chain alcohols and alkyl glycerols, including polyunsaturated compounds, are incorporated into the alkyl and alk-1-enyl moieties of the ionic alkoxylipids of rat liver, whereas polyunsaturated fatty acids are not.  相似文献   

3.
[1-14C]Octadecyl glyceryl ether did not label alkanes in the leaves of Brassica oleracea and Pisum sativum while [1-14C]octadecanol and [1-14C]octadecanoic acid readily labeled the alkanes. About 40% of the exogenous-labeled glyceryl ether was incorporated intact into choline phosphatide while 10–20% was converted into fatty acids and alcohols. [1-14C]octadecanol was not converted into alkyl glyceryl ether, but it was oxidized to the corresponding acid and then incorporated into alkanes. These results show that alkyl ether is not an intermediate in alkane biosynthesis. When [1-14C-1-3H]-octadecanol was fed to the leaves of B. oleracea and P. sativum, only the 14C and no 3H was incorporated into alkanes, ketones, and secondary alcohols. These results show that fatty alcohols are first oxidized to the acid before being incorporated into alkanes, ruling out fatty alcohol, alkyl ether, and alk-1-enyl ether as intermediates in alkane biosynthesis. The exogenous alcohols were also readily esterified into wax esters in both tissues.  相似文献   

4.
Free fatty acids, aldehydes, alcohols, and 1-O-alkyl and alk-1-enyl glycerols were identified and quantified in lipid extracts from bovine cardiac muscle. Although a number of components present in the free fatty aldehydes were also noted in the fatty chains in the 1-O-alk-1-enyl glycerols, a direct qualitative similarity did not exist as would be expected if the free fatty aldehydes were artifactual in origin. Also, a qualitative similarity did not exist between the fatty chains of the 1-O-alkyl and alk-1-enyl glycerols. This latter observation would suggest a mechanism other than biodehydrogenation of the alkyl ethers for the origin of the alk-1-enyl glycerols. Free fatty aldehydes were distributed evenly between the 105,000 g supernatant and particulate fractions of cardiac muscle, while the 1-O-alk-1-enyl glycerols were associated primarily with the particulate fraction. Free fatty alcohols were noted only in the supernatant fraction, while the 1-O-alkyl glycerols were present in both fractions.  相似文献   

5.
As a basis for physicochemical studies on the membranes of the strictly anaerobic bacteria Veillonella parvula, Anaerovibrio lipolytica, and Megasphaera elsdenii, the fatty acyl and alk-1-enyl moieties on the phosphoglycerides of these organism were characterized. Uncommon is the high proportion of a heptadecenoic acyl and alk-1-enyl moiety in these three lactate-fermenting bacteria. In contrast to V. parvula and A. lipolytica, M. elsdenii contains high amounts of branched-chain acyl and alk-1-enyl moieties. Freeze-etching electron microscopy showed that the lipids of the plasma membranes of V. parvula and A. lipolytica go from the liquid crystalline to the gel state upon lowering of the temperature, indicating that the membrane lipids are predominantly in the fluid state. No lipid-protein segregation could be detected in the plasma membrane of M. elsdenii. This can be explained by the abundance of branched-chain fatty acyl and alk-1-enyl residues in the membranes of this organism which may prevent lipid-protein segregation during the lipid-phase transition.  相似文献   

6.
G K Khuller  H Goldfine 《Biochemistry》1975,14(16):3642-3647
The effect of exogenous unsaturated fatty acids on the acyl and alk-1-enyl group composition of the phospholipids of Clostridium butyricum has been examined. Unsaturated fatty acids support the growth of this organism in the absence of biotin. When cells were grown at 37 degrees in media containing oleate or linoleate and a Casamino acid mixture containing traces of biotin, the exogenous fatty acids were found mainly in the alk-1-enyl chains of the plasmalogens with less pronounced incorporation into the acyl chains. However, at 25 degrees in this medium, both the acyl and alk-1-enyl chains contained substantial amounts of the 18:1 supplement plus the C19-cyclopropane chains derived from it. Ak-1-enyl chains in all the major phosphatide classes showed a uniformly high substitution by the oleate supplement in cells grown at 37 degrees. The oleate and C19-cyclopropane content of the acyl chains was more variable among the phosphatide classes. At 37 degrees, trans-9-octadecenoic acid (elaidic acid) also supported growth and was incorporated into both acyl and alk-1-enyl chains at a high level. When cells were grown on oleate at 37 degrees in media containing biotin-free Casamino acids, both the acyl and alk-1-enyl chains had a high level of 18:1 plus C19-cyclopropane chains. In the cells grown at 37 degrees with oleate substantial changes were seen in the phospholipid class composition. There was a large decrease in the ethanolamine plus N-methylethanolamine plasmalogens with a corresponding increase in the glycerol acetals of these plasmalogens. The glycerol phosphoglycerides were also significantly lower with the appearance of an unknown, relatively nonpolar phospholipid fraction.  相似文献   

7.
Veillonella parvula ATCC 10790, an anaerobic gram-negative coccus, contains diacyl and alk-1-enyl acyl (plasmalogen) forms of phosphatidylethanolamine and phosphatidylserine. We studied the effect of growth temperature on the lipid composition of this strain. There was a small increase in the phosphatidylethanolamine content but no change in the content of plasmalogens at the lower growth temperatures tested. The total acyl chains and the plasmalogen acyl chains contained between 73 and 80% mono-unsaturated fatty acids at all growth temperatures. The plasmalogen alk-1-enyl chains were significantly more unsaturated in cells grown at 30 and 25°C than in cells grown at 37°C. Differential scanning calorimetry of the hydrated phospholipids showed lower phase transition temperatures for the lipids from the cells grown at the lower temperatures. In Megasphaera elsdenii lipids, which are similar in composition to the lipids of V. parvula, the proportion of phosphatidylethanolamine also increased slightly at lower growth temperatures, with no significant change in the content of plasmalogens. M. elsdenii contained cyclopropane fatty acyl and alk-1-enyl chains in addition to the mono-unsaturated and saturated chains previously reported. As cells entered the stationary phase of growth at 30 and 42.5°C, there was a reciprocal increase in the proportion of cyclopropane acyl chains and decrease in the unsaturated moieties. The total proportion of cyclopropane and unsaturated acyl and alk-1-enyl chains was more than 65% at all growth temperatures studied, and there was no discernible increase in the sum of these moieties at the lower growth temperatures.  相似文献   

8.
Ethanolamine plasmalogen radiolabelled mainly in the O-alkenyl moiety was prepared from cell suspension cultures of the flagellate Leishmania donovani previously incubated with [1-14C]octadecanol over one growth period. The optimal concentration of [1-14C]octadecanol for labelling was shown to be 1 microM, when 60% of total lipid radioactivity appeared in the 1,2-diradyl-sn-glycero-3-phosphoethanolamine fraction, with an overall yield of approx. 35%. Analysis of this fraction revealed that 93% of the label was present in O-octa-dec-1-enyl, 3% in O-alkyl and 4% in acyl moieties. A specific radioactivity of approx. 14 mCi/mmol was determined. Raising the culture medium concentration of [1-14C]octadecanol to 2 microM yielded a product with a specific radioactivity of 25 mCi/mmol.  相似文献   

9.
Abstract: [1-3H, 1-14C]Palmitaldehyde(3H:14C= 15) was injected intracerebrally to 18-day-old rats and incorporation of radioactivity into brain lipids was followed over a 24-h period. The substrate was metabolized primarily by oxidation to palmitic acid with loss of tritium and, to a lesser extent, by reduction to hexadecanol. The alkyl moieties of the ethanolamine phospholipids showed considerably lower 3H:14C ratios than the substrate, indicating a substantial participation in ether lipid synthesis by tritium-free alcohols derived from 14C-labeled fatty acids. Virtually no 3H radioactivity was found in alkenyl moieties, indicating stereospecificity of both reduction of aldehyde and dehydrogenation of alkyl to alkenyl glycerolipid. The data are consistent with the general concept that plasmalogen biosynthesis proceeds exclusively through fatty alcohols and alkyl glycerolipids and that fatty aldehydes cannot be utilized directly.  相似文献   

10.
Ethanolamine phosphogylcerides (EPG) of human brain gray and white matter were analyzed for their alk-1′-enyl group and fatty acid compositions in sn-glycerol positions 1 and 2. Gray matter contained more 18:0 (54%) and less 18:1 (24.5%) alk-1′-enyl residues than white matter (16% and 57%. Sixty per cent of alk-1′-enyl 18.1 in gray matter was the (n-7), against 71%, in white matter. Both gray and white matter contained small amounts of 18:1 (n-5) and (n-3) isomers. The fatty acids in position I of the phosphatidylethanolamines were more saturated than the corresponding alk-1′-enyl groups of the plasmalogens. The ratios of monoenoic fatty acid isomers in position 1 were markedly different from those of the corresponding alk-1′-enyl groups in gray matter. The fatty acid patterns in position 2 of plasmalogen and phosphatidylethanolamines of white matter were similar except for 22:4(n-6) which was concentrated in the plasmalogen (16% against 10%, in the phosphatidyl ethanolamine). In gray matter, the same trend was noted. The data suggest that alk-1′-enyl residues and the fatty acids in position 1 as well as the fatty acids in position 2 of alk-1′-enyl acyl and diacyl type EPG in both gray and white matter are, at least in part, of different provenance.  相似文献   

11.
The major alkoxylipids of human heart and aorta are alkyl and alk-1-enyl diacyl glycerols, alkyl acyl and alk-1-enyl acyl glycerophosphoryl cholines, and the corresponding glycerophosphoryl ethanolamines. There are no pronounced differences in the composition of corresponding classes of alkoxylipids from heart, aorta, and other human tissues previously reported.  相似文献   

12.
13.
1. Mycobacterium phlei (A.T.C.C. 356) cells were incubated with (14)C-labelled short-chain fatty acids and the 6-O-methylglucose-containing lipopolysaccharides that became esterified with radioactive acyl groups were isolated. The pattern of labelling of these lipopolysaccharides with the different acyl groups, the effects of different conditions on labelling patterns, and the kinetics of the turnover of (14)C-labelled acyl groups were studied. 2. The labelling patterns are summarized as follows. [1-(14)C]Acetate was incorporated into all of the acyl groups. [1-(14)C]Propionate led to labelling of propionate and succinate, while [1-(14)C]isobutyrate was incorporated mostly as such, along with a trace amount in iso-octanoate. 3. Under the conditions of the experiments, [1-(14)C]acetate was rapidly incorporated into succinyl (3-carboxypropionyl) and octanoyl groups, whereas the acetyl groups themselves were labelled more slowly. Radioactivity in propionyl and succinyl groups, originating from [1-(14)C]propionate, attained maximum values and then gradually decreased in both. Incorporation of [1-(14)C]isobutyrate proceeded slowly but reached a plateau and remained constant. While n-butyrate is not a normal constituent of methyl-glucose-containing lipopolysaccharides, it was incorporated as such when n-[1-(14)C]-butyrate was supplied in the medium. 4. [1-(14)C]Acetyl groups were readily displaced by unlabelled acetate. On the other hand, the specific radioactivity of the succinyl group continued to increase during a 3h incubation with unlabelled succinate. Propionyl and succinyl groups, labelled by [1-(14)C]propionate, were displaced slowly by unlabelled propionate or succcinate. The isobutyryl group of the lipopolysaccharides did not turn over, in contrast to the results obtained with the other acyl substituents.  相似文献   

14.
Heating oils and fats may lead to cyclization of polyunsaturated fatty acids, as for example linolenic acid. Cyclohexenyl and cyclopentenyl fatty acids are subsequently present in some edible oils and these are suspected to induce metabolic disorders. In a previous experiment using [1-14C] labeled molecules, we published that these cyclic fatty acids are beta oxidized to the same extent as linolenic acid, at least for the first cycle of beta oxidation. However, it is possible that the presence of a ring could alter the ability of the organism to fully oxidize the molecule. In order to test this hypothesis, we assessed the oxidative metabolism of cyclic fatty acids carrying a 14C atom at the vicinity of the ring. For this purpose, rats were force-fed from 1.1 to 1.3 MBq of a representative fraction of dietary cyclohexenyl cyclic fatty acid monomers of [9-14C] 9-(6-propyl-cyclohex-3-enyl)-non-8-enoic acids and 14CO2 production was monitored for 24h. The animals were then necropsied and the radioactivity was determined in different tissues. No consistent radioactivity was recovered as 14CO2 24h after administration of the molecules. Sixty percent of the radioactivity was recovered in the urine and 30% in the gastrointestinal tract. By combining our previous data on the oxidation of [1-14C] cyclic fatty acids and the present results, we suggest that cyclohexenyl fatty acids are first beta oxidized in a similar way as linolenic acid and that the remaining molecule carrying the ring is detoxified and eliminated in the urine and feces.  相似文献   

15.
By the use of the Langendorff technique, surviving isolated rat hearts were perfused with [1-14 C] palmitate, [1-14C] hexadecanol or [1-14C,1-3H] hexadecanol under normal or anoxic conditions. After perfusion for 30min with either precursor, when oxygenated or in an hypoxic condition, or when 1mM-KCN was included in the system, the heart tissues showed no significant chemical changes in their content of total lipids, total phospholipids or total ethanolamine-containing phospholipids. Changes were observed in the ratio of alkyl-to alk-1-enyl-glycerophosphorylethanolamine in the tissue perfused with N2+CO1 plus CN-. A slight increase from 4.0+/-0.3 to 4.9+/-0.2% in alkyl derivatives and a decrease from 11.2+/-0.4 to 9.4+/-0.3% in alk-1-enyl derivatives was observed. The incorporation of the [14C] palmitate and the [14C] hexadecanol into the recovered phospholipids and plasmalogens was severely decreased in the tissues perfused with CN-: in the hypoxic state only a mild inhibition was observed compared with the oxygenated systems. Considerable 3H from [1-14C, 1-3H] hexadecanol was retained (25-35%) in the alk-1-enylether chains of plasmalogens under both the oxygenated conditions and with CN-, suggesting that the same mechanism of incorporation is operational at high or low O2 concentrations. The results are consistent with an O2-dependent, CN-sensitive step in the biosynthesis of plasmalogens in the rat heart.  相似文献   

16.
Chain Length specificity in alkyl glycerolipid biosynthesis was studied with microsomal preparations from 19-day-old rat brain. Saturated alcohols ranging from 12 to 22 carbon atoms were incorporated at different rates into alkyl dihydroxyacetone phosphate, the first intermediate in ether lipid biosynthesis. The rate of alkyl dihydroxyacetone phosphate formation was highest with hexadecanol and alcohols of either longer or shorter chain length were utilized much less efficiently. The monounsaturated octadecenol was incorporated more readily than any of the saturated alcohols. Rat brain microsomes were also found to reduce saturated fatty acids ranging from 12 to 22 carbon atoms, and oleic acid to the corresponding alcohols in the presence of ATP, coenzyme A, Mg2+, and NADPH. Chain length selectivity in the reduction was less pronounced than that in alkyl DHAP synthesis. The data indicate that the alkyl and alk-1-enyl composition of rat brain ether lipids is controlled by substrate specificity in the formation of both fatty alcohol and alkyl dihydroxyacetone phosphate.  相似文献   

17.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

18.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

19.
[1-14C]Dolichol mixed in vitro with rat serum and injected intravenously into rats was rapidly cleared from the circulation in a manner consistent with a two-compartment model. About 80% of the radioactivity recovered from animals killed after 1 day was in the liver, with smaller amounts being found in lung, carcass (internal organs removed), gastrointestinal tract and contents, and spleen. The kidneys, testes and heart contained little radioactivity, and the brain did not appear to take up any [1-14C]dolichol. The half-life for the turnover of radioactivity from [1-14C]dolichol in tissues varied considerably, being 2 days for the lung, 17 for liver and about 50 days for the carcass. After 1 day, and also after 4 and 21 days, most of the radioactivity in all tissues was as [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester, although a small amount of incorporation of [1-14C]dolichol radioactivity into phospholipids was also observed. Faeces collected over the first 4 days after injection contained 13% of the [1-14C]dolichol dose, but urine and expired air contained only small amounts of radioactivity. Radioactivity in faeces was nearly all as unchanged [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester. The [1-14C]dolichol remaining in liver after 21 days appeared to be in a pool (possibly lysosomes) where most of it was not subject to excretion.  相似文献   

20.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号