首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Distinction between elastin and collagen in arteriosclerotic lesions is difficult because immature and incompletely cross-linked collagen bind so-called elastica stains; furthermore, abnormal collagen can lack cross-striation and thus resemble elastin in electron microscopy. However, collagen and elastin differ significantly in their content of basic amino acids and hence in their affinity for heteropolyacids. This chemical difference was utilized for the development of a fluorescence microscopic method for distinction between collagen and elastin.Paraffin sections of human autopsy material were treated with a 1% aqueous solution of phosphomolybdic acid (PMA) for five minutes, rinsed in distilled water, dehydrated and mounted. Other series were treated with the PMA-molybdenum blue reaction and with various special stains.Only elastic membranes of aorta, the elastica interna and externa of sizable arteries, and true elastic fibers remained strongly fluorescent; the autofluorescence of collagen, reticulum fibers, basement membranes, pseudo-elastic fibers, and elastic membranes in small arteries was quenched. In other series PMA abolished the fluorescence of basic fluorochromes.Correlation of fluorescence and direct light microscopic observations with chemical and electron microscopic data showed that the PMA-fluorescence method permits distinction between elastin and various types of collagen.  相似文献   

2.
Summary The present findings show that both elastic system fibers and collagen markedly resisted change in tissues more than 2000 years old.The distribution of elastic fibers and elastic-related fibers (namely, oxytalan and elaunin fibers) in mummified tissues coincided with the observations made on the modern human tissues used as controls.The collagenous structures present in tissue sections obtained from the Egyptian mummy studied took on a deeply red colour when stained in the Picrosirius solution indicating that, as well as in the fresh controls, the basic groups in the collagen molecules were available for reacting with the strongly acidic dye Sirius Red. When viewed with polarized light, the collagen in the same tissue sections displayed an increased birefringence, which shows that the collagen molecules in mummified tissues maintain the oriented disposition which is typical of the modern human tissues used as controls.The methods employed have proved to be useful for the delineation of the elastic system fibers and of the collagenous scaffolding, which may be used as valuable landmarks in the study of the histoarchitecture of organs that have undergone considerable distortion.Supported in part by Grant no. 43.83.0610/00 from Financiadora de Estudos e Projetos (FINEP-FNDCT). G.S. Montes is Career Investigator of the Brazilian National Research Council (CNPq)  相似文献   

3.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

4.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

5.
Abstract

Ultraviolet (UV) rays cause skin damage. Chronic exposure to UV irradiation causes decreased collagen synthesis, degenerative changes in collagen bundles, accumulation of elastotic material and increased epidermal thickness. Origanum hypericifolium, an endemic Turkish plant, belongs to Lamiaceae family. The main constituents of its oil are monoterpenes including cymene, carvacrol, thymol and γ-terpinene. The effects of undiluted O. hypericifolium oil on UVB irradiated skin of mice were investigated histochemically. Four groups of female BALB/c mice, whose dorsal hair was shaved, were allocated as follows: non-UVB irradiated (Group 1), UVB-irradiated (Group 2), O. hypericifolium oil treated (Group 3), and O. hypericifolium oil treated and UVB irradiated (Group 4). Sections of dorsal skin samples were stained with Mallory's phosphotungstic acid hematoxylin for collagen fibers and Taenzer-Unna orcein for elastic fibers. Sections also were stained with hematoxylin and eosin to measure epidermal thickness. We observed intense staining of collagen and homogeneous, scattered thin elastic fibers in Group 1; scattered and weakly stained collagen and curled, amorphous, accumulate elastic fibers in Group 2; and intense staining of collagen in Groups 3 and 4. Accumulation of elastic fibers in the dermis was unremarkable in Groups 3 and 4. In Groups 3 and 4, O. hypericifolium oil treatment thickened the epidermis. Epidermal thickness was greatest in Group 4. We suggest that O. hypericifolium oil may block UVB induced alterations of collagen and elastic fibers, and increase epidermal thickness.  相似文献   

6.

Background

The penile erectile tissue has a complex microscopic anatomy with important functions in the mechanism of penile erection. The knowledge of such structures is necessary for understanding the normal physiology of the adult penis. Therefore, it is important to know the changes of these penile structures during fetal development. This study aims to analyze the development of the main components of the erectile tissue, such as collagen, smooth muscle fibers and elastic system fibers, in human fetuses.

Methodology/Principal Findings

We studied the penises of 56 human fetuses aged 13 to 36 weeks post-conception (WPC). We used histochemical and immunohistochemical staining, as well as morphometric techniques to analyze the collagen, smooth muscle fibers and elastic system fibers in the corpus cavernosum and in the corpus spongiosum. These elements were identified and quantified as percentage by using the Image J software (NIH, Bethesda, USA). From 13 to 36 WPC, in the corpus cavernosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 19.88% to 36.60%, from 4.39% to 29.76% and from 1.91% to 8.92%, respectively. In the corpus spongiosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 34.65% to 45.89%, from 0.60% to 11.90% and from 3.22% to 11.93%, respectively.

Conclusions

We found strong correlation between the elements analyzed with fetal age, both in corpus cavernosum and corpus spongiosum. The growth rate of these elements was more intense during the second trimester (13 to 24 WPC) of gestation, both in corpus cavernosum and in corpus spongiosum. There is greater proportional amount of collagen in the corpus spongiosum than in corpus cavernosum during all fetal period. In the corpus spongiosum, there is about four times more collagen than smooth muscle fibers and elastic system fibers, during all fetal period studied.  相似文献   

7.
Fibrillar collagens store, transmit and dissipate elastic energy during tensile deformation. Results of previous studies suggest that the collagen molecule is made up of alternating rigid and flexible domains, and extension of the flexible domains is associated with elastic energy storage. In this study, we model the flexibility of the alpha1-chains found in types I-III collagen molecules and microfibrils in order to understand the molecular basis of elastic energy storage in collagen fibers by analysing the areas under conformational plots for dipeptide sequences. Results of stereochemical modeling suggest that the collagen triple helix is made up of rigid and flexible domains that alternate with periods that are multiples of three amino acid residues. The relative flexibility of dipeptide sequences found in the flexible regions is about a factor of five higher than that found for the flexibility of the rigid regions, and the flexibility of types II and III collagen molecules appears to be higher than that found for the type I collagen molecule. The different collagen alpha1-chains were compared by correlating the flexibilities. The results suggest that the flexibilities of the alpha1-chains of types I and III collagen are more closely related than the flexibilities of the alpha1-chains in types I and II and II and III collagen. The flexible domains found in the alpha1-chains of types I-III collagen were found to be conserved in the microfibril and had periods of about 15 amino acid residues and multiples thereof. The flexibility profiles of types I and II collagen microfibrils were found to be more highly correlated than those for types I and III and II and III. These results suggest that the domain structure of the alpha1-chains found in types I-III collagen is an efficient means for storage of elastic energy during stretching while preserving the triple helical structure of the overall molecule. It is proposed that all collagens that form fibers are designed to act as storage elements for elastic energy. The function of fibers rich in type I collagen is to store and then transmit this energy while fibers rich in types II and III collagen may store and then reflect elastic energy for dissipation through viscous fibrillar slippage. Impaired elastic energy storage by extracellular matrices may lead to cellular damage and changes in signaling by mechanochemical transduction at the extracellular matrix-cell interface.  相似文献   

8.
Summary Two laminae composed of smooth muscles, elastic tissue and collagen have been described in relation with the gill skeleton in Perca fluviatilis. A transverse smoothmuscle lamina joins the base of the cartilage rods of the two opposite hemibranchs. A longitudinal smooth-muscle lamina runs parallel to the afferent branchial artery and joins the cartilage rods from one filament to the other. In both laminae, the formaldehyde-induced fluorescence technique (Falck-Hillarp) reveals a network of nerve fibers displaying a green fluorescence characteristic of catecholamines. At the ultrastructural level, the presence of nerve endings containing clear and granular vesicles, and the degeneration of these endings after 6-hydroxydopamine treatment confirm the aminergic nature and the sympathetic origin of this innervation. Surgical denervation brings evidence that the innervation of both laminae is supplied by the metatrematic branches of the branchial nerves. The role of these smooth-muscle laminae remains speculative.  相似文献   

9.
In order to facilitate locomotion and limb movement many animals store energy elastically in their tendons. In the turkey, much of the force generated by the gastrocnemius muscle is stored as elastic energy during tendon deformation and not within the muscle. As limbs move, the tendons are strained causing the collagen fibers in the extracellular matrices to be strained. During growth, avian tendons mineralize in the portions distal to the muscle and show increased tensile strength, modulus, and energy stored per unit strain as a result. In this study the energy stored in unmineralized and mineralized collagen fibers was measured and compared to the amount of energy stored in molecular models. Elastic energy storage values calculated using the molecular model were slightly higher than those obtained from collagen fibers, but display the same increases in slope as the fiber data. We hypothesize that these increases in slope are due to a change from the stretching of flexible regions of the collagen molecule to the stretching of less flexible regions. The elastic modulus obtained from the unmineralized molecular model correlates well with elastic moduli of unmineralized collagen from other studies. This study demonstrates the potential importance of molecular modeling in the design of new biomaterials.  相似文献   

10.
Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal–circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.  相似文献   

11.
Elastic fibers are key constituents of the skin. The commonly adopted optical technique for visualizing elastic fibers in the animal skin in vivo is 2‐photon microscopy (2 PM) of autofluorescence, which typically suffers from low signal level. Here we demonstrate a new optical methodology to image elastic fibers in animal models in vivo: 3‐photon microscopy (3 PM) excited at the 1700‐nm window combining with preferential labeling of elastic fibers using sulforhodamine B (SRB). First, we demonstrate that intravenous injection of SRB can circumvent the skin barrier (encountered in topical application) and preferentially label elastic fibers, as verified by simultaneous 2 PM of both autofluorescence and SRB fluorescence from skin structures. Then through 3‐photon excitation property characterization, we show that 3‐photon fluorescence can be excited from SRB at the 1700‐nm window, and 1600‐nm excitation is most efficient according to our 3‐photon action cross section measurement. Based on these results and using our developed 1600‐nm femtosecond laser source, we finally demonstrate 3 PM of SRB‐labeled elastic fibers through the whole dermis in the mouse skin in vivo, with only 3.7‐mW optical power deposited on the skin surface. We expect our methodology will provide novel optical solution to elastic fiber research.  相似文献   

12.
Summary In the albino rabbit the sclera is composed of (a) collagen fibrils arranged in fibers, (b) interposed elastic fibers and (c) fibroblasts. The diameter of collagen fibrils and fibers increases from the internal toward the external surface of the sclera. In the same direction the number of elastic fibers and fibroblasts decreases. A peculiar structure is found in the rough surfaced endoplasmic reticulum of the fibroblasts in the innermost portions of the sclera. The nature of this structure is discussed.This investigation was supported by Deutsche Forschungsgemeinschaft Training Grant SP 102/1 and by Research to Prevent Blindness, Inc., 598 Madison Avenue, New York N.Y. 10022.  相似文献   

13.
The present findings show that both elastic system fibers and collagen markedly resisted change in tissues more than 2000 years old. The distribution of elastic fibers and elastic-related fibers (namely, oxytalan and elaunin fibers) in mummified tissues coincided with the observations made on the modern human tissues used as controls. The collagenous structures present in tissue sections obtained from the Egyptian mummy studied took on a deeply red colour when stained in the Picrosirius solution indicating that, as well as in the fresh controls, the basic groups in the collagen molecules were available for reacting with the strongly acidic dye Sirius Red. When viewed with polarized light, the collagen in the same tissue sections displayed an increased birefringence, which shows that the collagen molecules in mummified tissues maintain the oriented disposition which is typical of the modern human tissues used as controls. The methods employed have proved to be useful for the delineation of the elastic system fibers and of the collagenous scaffolding, which may be used as valuable landmarks in the study of the histoarchitecture of organs that have undergone considerable distortion.  相似文献   

14.
The interstitial fluid spaces are filled with a mat of collagen fibers, and the interstices of this mat contain a mucopolysaccharide gel ground substance. Both the collagen fibers and the gel are elastic structures that can be expanded or compacted. In the expanded state the collagen fibers are pushed far apart and pockets of free fluid develop witin the gel. In the compacted state the elastic recoil of the compressed collagen fibers and gel reticular fibrillae seems to cause suction on the fluid within the tissue spaces, thus creating a subatmospheric pressure. Measurements of interstitial fluid pressure using a perforated capsule method indicate that this is normally slightly negative (subatmospheric) in most soft tissues. However, even very slight extra filtration of fluid into the tissue spaces increases the interstitial fluid pressure toward more positive values, which in turn increases lymph flow. The increased lymph flow then decreases the interstitial fluid volume and pressure back toward normal because of two mechanism, 1) direct removal of fluid from the tissue spaces in the lymph, and 2) removal of protein from the interstitial fluid in the lymph, thus decreasing the interstitial fluid colloid osmotic pressure and allowing more effective osmosis of fluid directly from the interstitial spaces back into the capillaries.  相似文献   

15.
Cutaneous aging and chronic exposure to UV irradiation leads to alterations in the appearance and biochemical composition of the skin. Members of the MMP family have been involved in the destruction of the extracellular matrix. Among them, gelatinases A and B were found to display elastolytic activity, in vitro. In this study, we first determined the ex vivo elastolytic potential of both endopeptidases, using human skin tissue sections and computerized morphometric analyses, and compared it with those of neutrophil elastase. In such conditions, gelatinase B (50 nM) induced 50% elastolysis. The percentage of elastic fibers degraded by gelatinase A (10-100 nM) never exceeded 10%. Elastolysis by gelatinase B and leukocyte elastase was characterized by a decrease in fiber length and an increase in the average diameter of the fibers. In addition, gelatinase B exhibited fibrillin-degrading activities. On the contrary, gelatinase A (50 nM) elicited up to 50% hydrolysis of collagen fibers, preferentially degrading type III collagen fibers. Gelatinase B did not promote any collagen degrading activity. Our data suggested that in vivo gelatinases could disrupt most extracellular matrix structures of human skin. Gelatinase B and to a much lesser extent, gelatinase A would degrade components of the elastic fibers network while gelatinase A, but not gelatinase B, would alter mostly collagen fibers and also degrade constituents of the dermo-epidermal junction.  相似文献   

16.
目的:用二次谐波成像结合双光子荧光成像的方法观察人源胶原蛋白透皮吸收的情况。方法:将荧光标记的人源胶原蛋白(1 mg/mL)涂抹于小鼠表皮层经皮肤吸收1 h后用背向二次谐波观察皮肤内胶原纤维作为真皮层定位标志,用双光子扫描共聚焦显微镜观察人源胶原蛋白透皮吸收深度,吸收方式。结果:二次谐波成像结合双光子荧光成像表明人源胶原蛋白透皮吸收1 h后可观察到荧光信号沿着毛囊聚集,并有部分荧光分子由毛囊扩散至真皮层。结论:二次谐波可以更快速,更灵敏地检测皮肤中的胶原纤维,以此作为检测物质透皮吸收深度的定位标志,具有不受荧光信号干扰的优点。人源胶原蛋白可以沿着毛囊进入真皮层,并从毛囊中扩散至胶原纤维层从而补充皮肤中的胶原纤维。  相似文献   

17.
The present study compares the dynamic mechanical properties and the contents of collagen and elastic fibers (oxytalan + elaunin + fully developed elastic fibers) of mice and rat lung strips. Resistance, elastance (E), and hysteresivity (eta) were obtained during sinusoidal oscillations. The relative amounts of blood vessel, bronchial, and alveolar walls, as well as the mean alveolar diameter were determined. In both species, resistance had a negative and E a positive dependence on frequency, whereas eta remained unchanged. Mice showed higher E and lower eta than rats. Although collagen and elastic fiber contents were similar in both groups, mice had more oxytalan and less elaunin and fully developed elastic fibers than rats. Rats showed less alveolar and more blood vessel walls and higher mean alveolar diameter than mice. In conclusion, mice and rats present distinct tissue mechanical properties, which are accompanied by specific extracellular fiber composition.  相似文献   

18.
The periodontal ligaments (PDLs) are soft connective tissue between the cementum covering the tooth root surface and alveolar bone. PDLs are composed of collagen and elastic system fibers, blood vessels, nerves, and various types of cells. Elastic system fibers are generally formed by elastin and microfibrils, but PDLs are mainly composed of the latter. Compared with the well-known function of collagen fibers to support teeth, little is known about the role of elastic system fibers in PDLs. To clarify their role, we examined PDLs of mice underexpressing fibrillin-1 (mgR mice), which is one of the major microfibrillar proteins. The PDLs of homozygous mgR mice showed one-quarter of the elastic system fibers of wild-type (WT) mice. A close association between the elastic system fibers and the capillaries was noted in WT, homozygous and heterozygous mgR mice. Interestingly, capillaries in PDLs of homozygous mice were dilated or enlarged compared with those of WT mice. A comparable level of type I collagen, which is the major collagen in PDLs, was expressed in PDL-cells of mice with three genotypes. However, multi-oriented collagen fiber bundles with a thinner appearance were noted in homozygous mice, whereas well-organized collagen fiber bundles were seen in WT mice. Moreover, there was a marked decrease in periostin expression, which is known to regulate the fibrillogenesis and crosslinking of collagen. These observations suggest that the microfibrillar protein, fibrillin-1, is indispensable for normal tissue architecture and gene expression of PDLs.  相似文献   

19.
Mineralized collagen fibrils are the basic building blocks of bone tissue at the supramolecular level. Several disease states, manipulation of the expression of specific proteins involved in biomineralization, and treatment with different agents alter the extent of mineralization as well as the morphology of mineral crystals which in turn affect the mechanical function of bone tissue. An experimental assessment of mineralized fibers' mechanical properties is challenged by their small size, leaving analytical and computational models as a viable alternative for investigation of the fibril-level mechanical properties. In the current study the variation of the elastic stiffness tensor of mineralized collagen fibrils with changing mineral volume fraction and mineral aspect ratios was predicted via a micromechanical model. The partitioning of applied stresses between mineral and collagen phases is also predicted for normal and shear loading of fibrils. Model predictions resulted in transversely isotropic collagen fibrils in which the modulus along the longer axis of the fibril was the greatest. All the elastic moduli increased with increasing mineral volume fraction whereas Poisson's ratios decreased with the exception of v12 (=v21). The partitioning of applied stresses were such that the stresses acting on mineral crystals were about 1.5, 15, and 3 times greater than collagen stresses when fibrils were loaded transversely, longitudinally, and in shear, respectively. In the overall the predictions were such that: (a) greatest modulus along longer axis; (b) the greatest mineral/collagen stress ratio along the longer axis of collagen fibers (i.e., greatest relief of stresses acting on collagen); and (c) minimal lateral contraction when fibers are loaded along the longer axis. Overall, the pattern of mineralization as put forth in this model predicts a superior mechanical function along the longer axis of collagen fibers, the direction which is more likely to experience greater stresses.  相似文献   

20.
 We have studied the possibility of associating fluorescence microscopy and hematoxylin-eosin staining for the identification of elastic fibers in elastin-rich tissues. Elastic fibers and elastic laminae were consistently identified by the proposed procedure, which revealed itself to be easy and useful for the determination of such structures and their distribution. The fluorescence properties of stained elastic fibers are due to eosin staining as revealed by fluorescence analysis of the dye in solution, with no or only minor contribution by the elastin auto-fluorescence. The main advantage of this technique resides in the possibility of studying the distribution of elastic fibers in file material without further sectioning and staining. The use of the confocal laser scanning microscope greatly improved the resolution and selectivity of imaging elastic fibers in different tissues. The determination of the three-dimensional distribution and structure of elastic fiber and laminae using the confocal laser scanning microscope was evaluated and also produced excellent results. Accepted: 28 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号