首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capnocytophaga spp. contain a group of unusual sulfonolipids, called capnoids (W. Godchaux III and E. R. Leadbetter, J. Bacteriol. 144:592-602, 1980). One of these lipids, capnine, is 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid; the others are, apparently, N-acylated versions of capnine. The lipids were found, in amounts ranging from 2.5 to 16 mumol of capnoid sulfur per g of cells (wet weight), in two Cytophaga spp. and also in several closely related organisms: several Capnocytophaga spp., Sporocytophaga myxococcoides, two Flexibacter spp., and two Flavobacterium spp. With the exception of the flavobacteria, all of these bacteria have been shown to exhibit gliding motility. The two Flavobacterium spp. belong to a subset of that genus that shares many other characteristics with the cytophagas. Only the Capnocytophaga spp. contained large quantities of capnine as such; in all of the others, most (and possibly all) of the capnoids were present as N-acylcapnines. Capnoid-negative bacteria included some gliding organisms that may not be closely related to the cytophagas: two fruiting myxobacters, a gliding cyanobacterium (Plectonema sp.), Beggiatoa alba, Vitreoscilla stercoraria, Herpetosiphon aurantiacus, and Lysobacter enzymogenes. Nongliding bacteria representing nine genera were also tested, and all of these fell into the capnoid-negative group.  相似文献   

2.
On the basis of small subunit rRNA sequence analyses five major subgroups within the flavobacteria-bacteroides phylum have been defined. These are tentatively designated the cytophaga subgroup (comprising largely Cytophaga species), the flavobacter subgroup (comprising the true flavobacteria and the polyphyletic genus Weeksella), the bacteroides subgroup (comprising the bacteroides and certain cytophaga-like bacteria), the sphingobacter subgroup (which contains the known sphingolipid-producing members of the phylum), and the saprospira subgroup (comprising particular species of Flexibacter, Flavobacterium, Haliscomenobacter, and, of course, the genus Saprospira). These groupings are given not only by evolutionary distance analysis, but can be defined and distinguished on the basis of a simple small subunit rRNA signatures.  相似文献   

3.
The Bacteroides-Cytophaga-Flavobacterium branch of the eubacterial phylogenetic tree contains a diverse group of bacterial species. Techniques for the genetic manipulation of Bacteroides spp. are well developed (A. A. Salyers, N. B. Shoemaker, and E. P. Guthrie, Crit. Rev. Microbiol. 14:49-71, 1987). Recently we developed techniques to genetically manipulate the gliding bacterium Cytophaga johnsonae (M. J. McBride and M. J. Kempf, J. Bacteriol. 178:583-590, 1996). We now demonstrate that some of these techniques allow genetic manipulation of a number of environmentally or medically significant bacteria in this group. The Bacteroides transposon Tn4351 was introduced into Cytophaga hutchinsonii, Cytophaga succinicans, Flavobacterium meningosepticum, Flexibacter canadensis, Flexibacter sp. strain FS1, and Sporocytophaga myxococcoides by conjugation. Tn4351 integrated itself into the host chromosomes and conferred erythromycin resistance. We isolated several auxotrophic mutants of Flavobacterium meningosepticum following Tn4351 mutagenesis. The C. johnsonae-Escherichia coli shuttle vector pCP11 functioned in C. succinicans but not in the other bacteria. pLYL03 did not replicate in any of these bacteria and should function as a convenient suicide vector. The identification of a system of gene transfer, a selectable marker, a suicide vector, and a transposon that functions in these diverse bacteria allows genetic manipulations to be performed.  相似文献   

4.
Hamana K  Nakagawa Y 《Microbios》2001,106(Z2):105-116
Cellular polyamines of 58 strains belonging to the Flavobacterium-Flexibacter-Cytophaga-Sphingobacterium complex were analysed by HPLC. Homospermidine was found in all species of Flavobacterium, Chryseobacterium, Empedobacter, Myroides, Cellulophaga, Salegentibacter, Psychroserpens and Gelidibacter of the family Flavobacteriaceae. Flavobacterium ferrugineum located outside of this family also contained homospermidine. Cytophaga fermentans and C. xylanolytica belonging to the family Bacteroidaceae contained spermidine. Cytophaga marinoflava and C. latercula belonging to Flavobacteriaceae contained homospermidine. The Cytophaga hutchinsonii/C. aurantiaca group contained homospermidine which was the major polyamine in Flexibacter maritimus/ F. ovolyticus of the family Flavobacteriaceae. The Flexibacter sancti/F filiformis/ Cytophaga arvensicola group, F. elegans, F. ruber, F. canadensis, F. flexilis and F. tractuosus, were located separately in different six clusters, and contained homospermidine. The Flexibacter litoralis/F. polymorphus/F. aggregans group contained spermidine, which was detected in Flexibacter roseolus belonging to a divergent cluster. Sphingobacterium and Pedobacter species of the family Sphingobacteriaceae contained homospermidine. Polyamine profiles serve, as a phenotypic chemotaxonomic marker, for the classification of this complex.  相似文献   

5.
The 16S rDNA sequences of 40 strains of 17 species in the genus Flexibacter, 5 strains of 4 species in the genus Microscilla, and 1 strain of Flexithrix dorotheae, including all type strains of approved and validated species in these genera, were determined to reveal their phylogenetic relationships. The 16S rRNA sequence analysis demonstrated the extreme heterogeneity of the genera Flexibacter and Microscilla. The strains examined diverged into 24 distinct lines of descent (1 group included both flexibacteria and flexithrix, and 1 group included both flexibacteria and microscilla) that were remote from each other at the genus level or higher. Flexibacter strains were scattered across the cytophaga-flavobacteria-bacteroides phylum and divided into 20 phylogenetic groups, and the genus Microscilla was separated into 5 groups. Flexibacter flexilis, the type species of the genus Flexibacter, and Microscilla marina, the type species of the genus Microscilla, were isolated from other organisms in their respective genera. This means that each genus should be restricted to only the type species. Flexithrix dorotheae, the type species of the genus Flexithrix, clustered with Flexibacter aggregans. The heterogeneity was found not only within genera but also within species. Flexibacter aggregans, Flexibacter aurantiacus, Flexibacter flexilis, Flexibacter roseolus, Flexibacter tractuosus, and "Microscilla sericea" each contained phylogenetically distant strains. The taxonomic concept of the genera Flexibacter, Flexithrix, and Microscilla should be reorganized in accordance with the natural relationships revealed in this study.  相似文献   

6.
A broad-range bacterial PCR method with universal 16S rDNA targeting primers and bacterial cultivation was used to identify the putative pathogen in flavobacterial outbreaks. Restriction fragment length polymorphism (PCR-RFLP) analysis and sequencing of the partial 16S rDNA PCR products of 10 skin samples and 10 representative isolates derived from the same fish specimens revealed differences between direct molecular and cultivation-based analysis. Flavobacterium columnare-like sequences dominated in the direct molecular analysis in most cases, whereas most of the isolates belonged to a phylogenetically heterogeneous group of flavobacteria clustering with F. hibernum. F. columnare was isolated in only 1 outbreak. The possible explanations for the different results may be attributable to difficulties in the plate cultivation procedure of external flavobacterial samples. During plate cultivation, the dominating Flavobacterium species can be masked by saprophytic species of the same genus or other genera, or the growth of flavobacteria can be completely inhibited by antagonistic bacteria such as Pseudomonas. Direct analysis of the prevailing 16S rDNA sequences avoids the problems with cultivation and may thus be preferable for the diagnosis of flavobacterial diseases. When isolating flavobacteria from external samples, serial dilution of the sample before plating can improve the results.  相似文献   

7.
A yellow-pigmented, gram-negative, gliding bacterium isolated from an industrial water spray air humidification system was implicated as a causative agent in several occurrences of lung disease with hypersensitivity pneumonitis-like symptoms. The bacterium, designated WF-164, lacked microcysts or fruiting bodies and had a DNA base composition of 34.8 mol% of guanine plus cytosine. Gliding, flexing, nonflagellated cells measuring 0.3 by 3.5 to 8.9 micron were observed by using light and electron microscopy. Tests to determine utilization of selected carbohydrates revealed an amylolitic, chitinoclastic, noncellulytic bacterium. A number of additional biochemical and physiological tests were performed. DNA homology studies detected a 77.8% similarity to Cytophaga aquatilis (ATCC 29551). Comparisons of cellular fatty acid and carbohydrate contents of isolate WF-164 with a Flexibacter sp., several Cytophaga spp., and Flavobacterium reference strains revealed similar patterns to that of C. aquatilis. On the basis of these characteristics, isolate WF-164 was identified as a new Cytophaga sp.  相似文献   

8.
The 525 strains of heterotrophic bacteria isolated from natural and cultured populations of the mussel Mytilus trossulus and the surrounding seawater were identified to a genus level on the basis of phenotypic analysis and the fatty acid composition of cell lipids. Gram-negative isolates were dominated by six genera of the family Enterobacteriaceae and by the genera Pseudoalteromonas, Vibrio, Photobacterium, Cytophaga/Flavobacterium/Bacteroides, Pseudomonas, and Moraxella, Gram-positive isolates were mainly represented by the genus Streptomyces. The taxonomic compositions of natural and cultured populations of the mussel M. trossulus in Peter the Great Bay were similar.  相似文献   

9.
5S rRNA sequences were determined for the green sulphur bacteria Chlorobium limicola, Chlorobium phaeobacteroides and Prosthecochloris aestuarii, for Thermomicrobium roseum, which is a relative of the green non-sulphur bacteria, and for Cytophaga aquatilis, Cytophaga heparina, Cytophaga johnsonae, Flavobacterium breve, Flexibacter sp. and Saprospira grandis, organisms allotted to the phylum 'Bacteroides-Cytophaga-Flavobacterium' and relatives as determined by 16S rRNA analyses. By using a clustering algorithm a dendrogram was constructed from these sequences and from all other known eubacterial 5S RNA sequences. The dendrogram showed differences, as well as similarities, with respect to results obtained by 16S RNA analyses. The 5S RNA sequences of green sulphur bacteria were closely related to one another, and to a cluster containing 5S RNA sequences from Bacteroides and its relatives, including Cytophaga aquatilis. 5S RNA sequences of all other representatives of the 'Bacteroides-Cytophaga-Flavobacterium' phylum as distinguished by 16S RNA analysis failed to group with Bacteroides and related clusters. On the basis of 5S RNA sequences, Thermomicrobium roseum clustered with Chloroflexus aurantiacus, as was expected from 16S RNA analysis.  相似文献   

10.
The aim of this work was to isolate, identify and type carbofuran-degrading bacteria from two geographically distant soils. Restriction Fragment Length Polymorphism (RFLP) patterns of the 16S rRNA gene and partial 16S rRNA sequence analysis were used to classify the 23 isolates obtained. Nine of them showed high similarity to Pseudomonas strains, seven showed similarity to the Flexibacter/Cytophaga/Bacteroides group and the remainder showed similarity to other bacterial genera. Isolates within the same group were sub-typed by comparing partial 16S rRNA sequences and SDS-PAGE analysis of their total protein profiles. Many of the UK isolates showed similarity to the Pseudomonas genera, while most of the Greek isolates showed similarity to the Flexibacter/Cytophaga/Bacteroides group. Only two Chrysobacterium strains isolated from both the UK and Greek soils were identical.  相似文献   

11.
Most flavobacteria tested with the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucuronide possessed beta-glucuronidase (GUD), but when some of the same strains were tested with the API ZYM gallery, all were negative for GUD. Conflicting reports also appear in the literature about starch hydrolysis among flavobacteria. We observed that the results obtained can depend on the medium used and the length of incubation. Our results indicate that GUD activity and starch hydrolysis are more widely distributed in the genus Flavobacterium than previously reported.  相似文献   

12.
Beleneva  I. A.  Zhukova  N. V.  Maslennikova  E. F. 《Microbiology》2003,72(4):472-477
The 525 strains of heterotrophic bacteria isolated from natural and cultured populations of the mussel Mytilus trossulus and the surrounding seawater were identified to a genus level on the basis of phenotypic analysis and the fatty acid composition of cell lipids. Gram-negative isolates were dominated by six genera of the family Enterobacteriaceae and by the genera Pseudoalteromonas, Vibrio, Photobacterium, Cytophaga/Flavobacterium/Bacteroides, Pseudomonas, and Moraxella. Gram-positive isolates were mainly represented by the genus Streptomyces. The taxonomic compositions of natural and cultured populations of the mussel M. trossulus in Peter the Great Bay were similar.  相似文献   

13.
Forty environmental strains and reference cultures of Flavobacterium, Cytophaga and Weeksella spp. were examined by numerical taxonomy. Twenty-seven strains were recovered in four phena. Phena 1A and 1B comprised 48% of the strains and were sufficiently similar to the genus Weeksella as to suggest possible inclusion in this genus. They could not be accommodated in the existing species W. virosa and W. zoohelcum. Strains from phenon 2 appear to belong neither in the Flavobacterium or the Weeksella genus. Although no reference strains were included in phena 3 and 4 they appear phenotypically to be most similar to F. breve and F. odoratum respectively.  相似文献   

14.
Most flavobacteria tested with the fluorogenic substrate 4-methylumbelliferyl-β-D-glucuronide possessed β-glucuronidase (GUD), but when some of the same strains were tested with the API ZYM gallery, all were negative for GUD. Conflicting reports also appear in the literature about starch hydrolysis among flavobacteria. We observed that the results obtained can depend on the medium used and the length of incubation. Our results indicate that GUD activity and starch hydrolysis are more widely distributed in the genus Flavobacterium than previously reported.  相似文献   

15.
Forty environmental strains and reference cultures of Flavobacterium, Cytophaga and Weeksella spp. were examined by numerical taxonomy. Twenty-seven strains were recovered in four phena. Phena 1A and IB comprised 48% of the strains and were sufficiently similar to the genus Weeksella as to suggest possible inclusion in this genus. They could not be accommodated in the existing species W. virosa and W. zoohelcum. Strains from phenon 2 appear to belong neither in the Flavobacterium or the Weeksella genus. Although no reference strains were included in phena 3 and 4 they appear phenotypically to be most similar to F. breve and F. odoratum respectively.  相似文献   

16.
The aim of our study was to estimate the uncultured eubacterial diversity of a soil sample collected below a dead seal, Cape Evans, McMurdo, Antarctica by an SSU rDNA gene library approach. Our study by sequencing of clones from SSU rDNA gene library approach revealed high diversity in the soil sample from Antarctica. More than 50% of clones showed homology to Cytophaga-Flavobacterium-Bacteroides group; sequences also belonged to alpha, beta, gamma proteobacteria, Thermus-Deinococcus and high GC gram-positive group; Phylogenetic analysis of the SSU rDNA clones showed the presence of species belonging to Cytophaga spp., Vitellibacter vladivostokensis, Aequorivita lipolytica, Aequorivita crocea, Flavobacterium spp., Flexibacter sp., Subsaxibacter broadyi, Bacteroidetes, Roseobacter sp., Sphingomonas baekryungensis, Nitrosospira sp., Nitrosomonas cryotolerans, Psychrobacter spp., Chromohalobacter sp., Psychrobacter okhotskensis, Psychrobacter fozii, Psychrobacter urativorans, Rubrobacter radiotolerans, Marinobacter sp., Rubrobacteridae, Desulfotomaculum aeronauticum and Deinococcus sp. The presence of ammonia oxidizing bacteria in Antarctica soil was confirmed by the presence of the amoA gene. Phylogenetic analysis revealed grouping of clones with their respective groups.  相似文献   

17.
A psychrotrophic Flexibacter sp., Flexibacter ovolyticus sp. nov., was isolated from the adherent bacterial epiflora of Atlantic halibut (Hippoglossus hippoglossus L.) eggs and was shown to be an opportunistic pathogen for halibut eggs and larvae. The strains which we isolated had the enzymatic capacity to dissolve both the chorion and the zona radiata of the egg shells. A total of 35 isolates were characterized by using morphological and biochemical tests. These strains were rod shaped, gram negative, Kovacs oxidase positive, and pale yellow and exhibited gliding motility. They did not produce acid from any of the wide range of carbohydrates tested. Our isolates had the ability to degrade gelatin, tyrosine, DNA, and Tween 80. Starch, cellulose, and chitin were not degraded. The strains were catalase and nitrate reductase positive, did not produce H2S, and did not grow under anaerobic conditions. F. ovolyticus resembles Flexibacter maritimus, but differs from the latter species in several biochemical and physiological characteristics. DNAs from F. ovolyticus strains had guanine-plus-cytosine contents which ranged from 30.3 to 32.0 mol% (strains EKC001, EKD002T [T = type strain], and VKB004), and DNA-DNA hybridization studies revealed levels of relatedness between F. ovolyticus EKD002T and F. maritimus NCMB 2154T and NCMB 2153 of 42.7 and 30.0%, respectively. Compared with previously described Cytophaga and Flexibacter spp. with low guanine-plus-cytosine contents, F. ovolyticus constitutes a new species. Strain EKD002 (= NCIMB 13127) is the type strain of the new species.  相似文献   

18.
Five isolates of a filamentous bacterial morphotype with the distinctive diagnostic microscopic features of Eikelboom Type 1863 were obtained from activated sludge sewage treatment plants in Victoria, Australia. On the basis of phenotypic evidence and 16S rDNA sequence data, these isolates proved to be polyphyletic. Two (Ben 06 and Ben 06C) are from the Chryseobacterium subgroup which is in the Cytophaga group, subdivision I of the Flexibacter – Cytophaga – Bacteroides phylum. Two (Ben 56 and Ben 59) belong to the genus Acinetobacter , and one (Ben 58) is a Moraxella sp., closest to Mor. osloensis . The significance of these findings to the reliance on microscopic features for identification of these filamentous bacteria in activated sludge is discussed.  相似文献   

19.
Hamana K  Nakagawa Y 《Microbios》2001,106(413):7-17
Cellular polyamines of eighteen genera belonging to the Flavobacterium-Flexibacter-Cytophaga complex were analysed by ion exchange liquid chromatography. Homospermidine was the major polyamine in the genera Bergeyella, Riemerella, Ornithobacterium, Weeksella, Capnocytophaga, Polaribacter and Psychroflexus belonging to the family Flavobacteriaceae. In the family Spirosomaceae, Runella, Spirosoma and Flectobacillus species contained spermidine whereas Cyclobacterium species contained homospermidine. Within a divergent cluster, Haliscomenobacter and Lewinella species contained spermidine whereas Saprospira grandis contained agmatine alone. The major polyamine of Chitinophaga and Sporocytophaga species was homospermidine. Flexithrix dorotheae contained spermidine. Microscilla marina, the type species of the genus Microscilla, contained spermidine and cadaverine. However, 'Microscilla sericea' contained homospermidine, 'Microscilla furvescens' contained spermidine, and 'Microscilla arenaria' lacked all polyamines. Polyamine profiles serve as a phenotypic chemotaxonomic marker for the reclassification of the genera belonging to the complex.  相似文献   

20.
用matK序列分析探讨木兰属植物的系统发育关系   总被引:2,自引:0,他引:2  
用木兰科Magnoliaceae 57种植物的matK基因序列构建了该科的系统发育分支图。结果表明: (1)木兰属Magnolia L.是一个因为性状的趋同演化而建立的多系类群; (2)木兰亚属subgen. Magnolia和玉兰亚属subgen. Yulania (Spach) Reichenb.亲缘关系较远, 支持将后者从该属中分出建立玉兰属Yulania Spach, 木兰亚属作为木兰属保留; (3)木兰亚属的sect. Splendentes Dandy ex Vazquez组与皱种组sect. Rytidospermum Spach的两个美洲种M. macrophylla Michaux和M. dealbata Zucc.亲缘关系较近, 荷花玉兰组sect. Theorhodon Spach与常绿组sect. Gwillimia DC.的亲缘关系较近; (4)盖裂木属Talauma Juss.可以成立, 而其分布于亚洲的Blumiana Blume组可归入木兰属; (5)拟单性木兰属Parakmeria Hu &; Cheng、华盖木属Manglietiastrum Law以及单性木兰属Kmeria (Pierre) Dandy形成一个单系群, 与玉兰亚属和含笑属Michelia L.的亲缘关系较近。花的着生位置不足以作为木兰科的分族依据, 含笑族Michelieae和木兰族Magnolieae的特征及其界定应做修改。将玉兰亚属从木兰属分出后, 木兰属与含笑属无性状交叉,成为两个区别明显的属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号