首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribose-5-phosphate isomerases (EC 5.3.1.6) inter-convert ribose-5-phosphate and ribulose-5-phosphate. This reaction allows the synthesis of ribose from other sugars, as well a means for salvage of carbohydrates after nucleotide breakdown. Two unrelated types of enzyme are known to catalyze the isomerization. The most common one, RpiA, is present in almost all organisms. The second type, RpiB, is found in many bacterial species.Here, we demonstrate that the RpiB from Mycobacterium tuberculosis (Rv2465c) has catalytic properties very similar to those previously reported for the Escherichia coli RpiB enzyme. Further, we report the structure of the mycobacterial enzyme, solved by molecular replacement and refined to 1.88A resolution. Comparison with the E.coli structure shows that there are important differences in the two active sites, including a change in the position and nature of the catalytic base. Sequence comparisons reveal that the M.tuberculosis and E.coli RpiB enzymes are in fact representative of two distinct sub-families. The mycobacterial enzyme represents a type found only in actinobacteria, while the enzyme from E.coli is typical of that seen in many other bacterial proteomes. Both RpiBs are very different from RpiA in structure as well as in the construction of the active site. Docking studies allow additional insights into the reactions of all three enzymes, and show that many features of the mechanism are preserved despite the different catalytic components.  相似文献   

2.
Ribose-5-phosphate isomerase A (RpiA; EC 5.3.1.6) interconverts ribose-5-phosphate and ribulose-5-phosphate. This enzyme plays essential roles in carbohydrate anabolism and catabolism; it is ubiquitous and highly conserved. The structure of RpiA from Escherichia coli was solved by multiwavelength anomalous diffraction (MAD) phasing, and refined to 1.5 A resolution (R factor 22.4%, R(free) 23.7%). RpiA exhibits an alpha/beta/(alpha/beta)/beta/alpha fold, some portions of which are similar to proteins of the alcohol dehydrogenase family. The two subunits of the dimer in the asymmetric unit have different conformations, representing the opening/closing of a cleft. Active site residues were identified in the cleft using sequence conservation, as well as the structure of a complex with the inhibitor arabinose-5-phosphate at 1.25 A resolution. A mechanism for acid-base catalysis is proposed.  相似文献   

3.
D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.  相似文献   

4.
Ribose-5-phosphate isomerase (Rpi), an important enzyme in the pentose phosphate pathway, catalyzes the interconversion of ribulose 5-phosphate and ribose 5-phosphate. Two unrelated isomerases have been identified, RpiA and RpiB, with different structures and active site residues. The reaction catalyzed by both enzymes is thought to proceed via a high energy enediolate intermediate, by analogy to other carbohydrate isomerases. Here we present studies of RpiB from Mycobacterium tuberculosis together with small molecules designed to resemble the enediolate intermediate. The relative affinities of these inhibitors for RpiB have a different pattern than that observed previously for the RpiA from spinach. X-ray structures of RpiB in complex with the inhibitors 4-phospho-d-erythronohydroxamic acid (K(m) 57 microm) and 4-phospho-d-erythronate (K(i) 1.7 mm) refined to resolutions of 2.1 and 2.2 A, respectively, allowed us to assign roles for most active site residues. These results, combined with docking of the substrates in the position of the most effective inhibitor, now allow us to outline the reaction mechanism for RpiBs. Both enzymes have residues that can catalyze opening of the furanose ring of the ribose 5-phosphate and so can improve the efficiency of the reaction. Both enzymes also have an acidic residue that acts as a base in the isomerization step. A lysine residue in RpiAs provides for more efficient stabilization of the intermediate than the corresponding uncharged groups of RpiBs; this same feature lies behind the more efficient binding of RpiA to 4-phospho-d-erythronate.  相似文献   

5.
Interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate is an important step in the pentose phosphate pathway. Two unrelated enzymes with R5P isomerase activity were first identified in Escherichia coli, RpiA and RpiB. In this organism, the essential 5-carbon sugars were thought to be processed by RpiA, while the primary role of RpiB was suggested to instead be interconversion of the rare 6-carbon sugars d-allose-6-phosphate (All6P) and d-allulose-6-phosphate. In Mycobacterium tuberculosis, where only an RpiB is found, the 5-carbon sugars are believed to be the enzyme's primary substrates. Here, we present kinetic studies examining the All6P isomerase activity of the RpiBs from these two organisms and show that only the E. coli enzyme can catalyze the reaction efficiently. All6P instead acts as an inhibitor of the M. tuberculosis enzyme in its action on R5P. X-ray studies of the M. tuberculosis enzyme co-crystallized with All6P and 5-deoxy-5-phospho-d-ribonohydroxamate (an inhibitor designed to mimic the 6-carbon sugar) and comparison with the E. coli enzyme's structure allowed us to identify differences in the active sites that explain the kinetic results. Two other structures, that of a mutant E. coli RpiB in which histidine 99 was changed to asparagine and that of wild-type M. tuberculosis enzyme, both co-crystallized with the substrate ribose-5-phosphate, shed additional light on the reaction mechanism of RpiBs generally.  相似文献   

6.
Leishmaniasis is a group of tropical diseases caused by protozoan parasites of the genus Leishmania. Due to the emergence of resistance to the available antileishmanial drugs there is an immediate need to identify molecular targets on which to base future treatment strategies. Ribose 5-phosphate isomerase (Rpi; EC 5.3.1.6) is a key enzyme of the pentose phosphate pathway (PPP) which catalyses the reversible aldose-ketose isomerization between Ribose 5-phosphate (R5P) and Ribulose 5-phosphate (Ru5P). It exists in two isoforms A and B. These two are completely unrelated enzymes catalyzing the same reaction. Analysis of the Leishmania infantum genome revealed that though the RpiB gene is present, RpiA homologs are completely absent. An absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for the chemotherapy of Leishmaniasis. In this paper, we report for the first time the presence of B isoform of the Rpi enzyme in Leishmania donovani (LdRpiB) by cloning and molecular characterization of the enzyme. An amplified L. donovani RpiB gene is 519 bp and encodes for a putative 172 amino acid protein with a molecular mass of ~19 kDa. An ~19 kDa protein with poly-His tag at the C-terminal end was obtained by heterologous expression of LdRpiB in Escherichia coli. The recombinant form of RpiB was obtained in soluble and active form. The LdRpiB exists as a dimer of dimers i.e. the tetramer form. The polyclonal antibody against Trypanosoma cruzi RpiB could detect a band of ~19 kDa with the purified recombinant RpiB as well as native RpiB from the L. donovani promastigotes. Recombinant RpiB obeys the classical Michaelis-Menten kinetics utilizing R5P as the substrate with a K(m) value of 2.4±0.6 mM and K(cat) value of 30±5.2 s(-1). Our study confirms the presence of Ribose 5-phosphate isomerase B in L. donovani and provides functional characterization of RpiB for further validating it as a potential drug target.  相似文献   

7.
Ribose-5-phosphate isomerase (Rpi; EC 5.3.1.6) is a key activity of the pentose phosphate pathway. Two unrelated types of sequence/structure possess this activity: type A Rpi (present in most organisms) and type B Rpi (RpiB) (in some bacteria and parasitic protozoa). In the present study, we report enzyme kinetics and crystallographic studies of the RpiB from the human pathogen, Trypanosoma cruzi. Structures of the wild-type and a Cys69Ala mutant enzyme, alone or bound to phosphate, D-ribose 5-phosphate, or the inhibitors 4-phospho-D-erythronohydroxamic acid and D-allose 6-phosphate, highlight features of the active site, and show that small conformational changes are linked to binding. Kinetic studies confirm that, similar to the RpiB from Mycobacterium tuberculosis, the T. cruzi enzyme can isomerize D-ribose 5-phosphate effectively, but not the 6-carbon sugar D-allose 6-phosphate; instead, this sugar acts as an inhibitor of both enzymes. The behaviour is distinct from that of the more closely related (to T. cruzi RpiB) Escherichia coli enzyme, which can isomerize both types of sugars. The hypothesis that differences in a phosphate-binding loop near the active site were linked to the differences in specificity was tested by construction of a mutant T. cruzi enzyme with a sequence in this loop more similar to that of E. coli RpiB; this mutant enzyme gained the ability to act on the 6-carbon sugar. The combined information allows us to distinguish the two types of specificity patterns in other available sequences. The results obtained in the present study provide insights into the action of RpiB enzymes generally, and also comprise a firm basis for future work in drug design.  相似文献   

8.
Trypanosoma cruzi, the human parasite that causes Chagas disease, contains a functional pentose phosphate pathway, probably essential for protection against oxidative stress and also for R5P (ribose 5-phosphate) production for nucleotide synthesis. The haploid genome of the CL Brener clone of the parasite contains one gene coding for a Type B Rpi (ribose 5-phosphate isomerase), but genes encoding Type A Rpis, most frequent in eukaryotes, seem to be absent. The RpiB enzyme was expressed in Escherichia coli as a poly-His tagged active dimeric protein, which catalyses the reversible isomerization of R5P to Ru5P (ribulose 5-phosphate) with Km values of 4 mM (R5P) and 1.4 mM (Ru5P). 4-phospho-D-erythronohydroxamic acid, an analogue to the reaction intermediate when the Rpi acts via a mechanism involving the formation of a 1,2-cis-enediol, inhibited the enzyme competitively, with an IC50 value of 0.7 mM and a Ki of 1.2 mM. Site-directed mutagenesis allowed the demonstration of a role for His102, but not for His138, in the opening of the ribose furanosic ring. A major role in catalysis was confirmed for Cys69, since the C69A mutant was inactive in both forward and reverse directions of the reaction. The present paper contributes to the know-ledge of the mechanism of the Rpi reaction; in addition, the absence of RpiBs in the genomes of higher animals makes this enzyme a possible target for chemotherapy of Chagas disease.  相似文献   

9.
The open reading frame TM1080 from Thermotoga maritima encoding ribose-5-phosphate isomerase type B (RpiB) was cloned and over-expressed in Escherichia coli BL21 (DE3). After optimization of cell culture conditions, more than 30% of intracellular proteins were soluble recombinant RpiB. High-purity RpiB was obtained by heat pretreatment through its optimization in buffer choice, buffer pH, as well as temperature and duration of pretreatment. This enzyme had the maximum activity at 70°C and pH 6.5-8.0. Under its suboptimal conditions (60°C and pH 7.0), k(cat) and K(m) values were 540s(-1) and 7.6mM, respectively; it had a half lifetime of 71h, resulting in its turn-over number of more than 2×10(8)mol of product per mol of enzyme. This study suggests that it is highly feasible to discover thermostable enzymes from exploding genomic DNA database of extremophiles with the desired stability suitable for in vitro synthetic biology projects and produce high-purity thermoenzymes at very low costs.  相似文献   

10.
Purification and molecular analysis of ribose-5-phosphate isomerase (EC5.3.1.6) from Saccharomyces cerevisiae is described first time. The enzymewas enriched from a haploid deletion mutant containing the wild-type gene ona multicopy plasmid elaborating the following steps: ammonium sulphateprecipitation, interfacial salting out on Sepharose 6B, high performanceliquid chromatography on Fractogel EMD DEAE and on Resource Phenyl. Theenzyme activity was found to be rather unstable possibly caused by removalof stabilizing cofactors or proteins during the purification procedure.The purified enzyme showed a hyperbolic dependence on the substrateribose-5-phosphate with a Km-value of 1.6±0.3 mmol/l.For the native enzyme a molecular mass of 115±10 kDa was determinedas found by saccharose density gradient centrifugation, sedimentationequilibrium analysis, size exclusion chromatography and polyacrylamide gelelectrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresisand Western blotting revealed one band with a molecular mass of 31±2kDa. Thus, the native enzyme is composed of four subunits of identicalsize.The molecular mass of the subunit and the identified N-terminal sequenceof 33 amino acids fits well the 258 amino acid protein encoded by the S.cerevisiae RKI open reading frame, which was characterized previously onlyby increasing specific activities of ribose-5-phosphate isomerase in cellsafter cloning the gene. On the basis of the conserved amino acids analignment of the amino acid sequence of ribose-5-phosphate isomerase fromyeast with those of the enzyme from mouse, spinach and Escherichia coli ispresented.  相似文献   

11.
This study reports syntheses of d-allose 6-phosphate (All6P), d-allulose (or d-psicose) 6-phosphate (Allu6P), and seven d-ribose 5-phosphate isomerase (Rpi) inhibitors. The inhibitors were designed as analogues of the 6-carbon high-energy intermediate postulated for the All6P to Allu6P isomerization reaction (Allpi activity) catalyzed by type B Rpi from Escherichiacoli (EcRpiB). 5-Phospho-d-ribonate, easily obtained through oxidative cleavage of either All6P or Allu6P, led to the original synthon 5-dihydrogenophospho-d-ribono-1,4-lactone from which the other inhibitors could be synthesized through nucleophilic addition in one step. Kinetic evaluation on Allpi activity of EcRpiB shows that two of these compounds, 5-phospho-d-ribonohydroxamic acid and N-(5-phospho-d-ribonoyl)-methylamine, indeed behave as new efficient inhibitors of EcRpiB; further, 5-phospho-d-ribonohydroxamic acid was demonstrated to have competitive inhibition. Kinetic evaluation on Rpi activity of both EcRpiB and RpiB from Mycobacteriumtuberculosis (MtRpiB) shows that several of the designed 6-carbon high-energy intermediate analogues are new competitive inhibitors of both RpiBs. One of them, 5-phospho-d-ribonate, not only appears as the strongest competitive inhibitor of a Rpi ever reported in the literature, with a Ki value of 9 μM for MtRpiB, but also displays specific inhibition of MtRpiB versus EcRpiB.  相似文献   

12.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   

13.
Glucosamine 6-phosphate (GlcN-6-P) synthase is an ubiquitous enzyme that catalyses the first committed step in the reaction pathway that leads to formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), a precursor of macromolecules that contain amino sugars. Despite sequence similarities, the enzyme in eukaryotes is tetrameric, whereas in prokaryotes it is a dimer. The activity of eukaryotic GlcN-6-P synthase (known as Gfa1p) is regulated by feedback inhibition by UDP-GlcNAc, the end product of the reaction pathway, whereas in prokaryotes the GlcN-6-P synthase (known as GlmS) is not regulated at the post-translational level. In bacteria and fungi the enzyme is essential for cell wall synthesis. In human the enzyme is a mediator of insulin resistance. For these reasons, Gfa1p is a target in anti-fungal chemotherapy and in therapeutics for type-2 diabetes. The crystal structure of the Gfa1p isomerase domain from Candida albicans has been analysed in complex with the allosteric inhibitor UDP-GlcNAc and in the presence of glucose 6-phosphate, fructose 6-phosphate and an analogue of the reaction intermediate, 2-amino-2-deoxy-d-mannitol 6-phosphate (ADMP). A solution structure of the native Gfa1p has been deduced using small-angle X-ray scattering (SAXS). The tetrameric Gfa1p can be described as a dimer of dimers, with each half similar to the related enzyme from Escherichia coli. The core of the protein consists of the isomerase domains. UDP-GlcNAc binds, together with a metal cation, in a well-defined pocket on the surface of the isomerase domain. The residues responsible for tetramerisation and for binding UDP-GlcNAc are conserved only among eukaryotic sequences. Comparison with the previously studied GlmS from E. coli reveals differences as well as similarities in the isomerase active site. This study of Gfa1p focuses on the features that distinguish it from the prokaryotic homologue in terms of quaternary structure, control of the enzymatic activity and details of the isomerase active site.  相似文献   

14.
Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts ATP, dATP, GTP, CTP, and UTP as diphosphoryl donors. All of these properties are characteristic for class II PRPP synthases. K(m) values for ATP and ribose 5-phosphate are 77 and 48 microM, respectively. Gel filtration reveals a molecular mass of the native enzyme of approximately 110 kD, which is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two enzymes are essentially conserved. Amino acid sequence comparison reveals that residues of class I PRPP synthases interacting with allosteric inhibitors are not conserved in class II PRPP synthases. Similarly, residues important for oligomerization of the B. subtilis enzyme show little conservation in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4.  相似文献   

15.
Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae A145 is a mini-Tn5 Km transposon mutant of strain 501R3 that was significantly reduced in suppression of damping-off on cucumber caused by P. ultimum. Strain A145 was deficient in colonization of cucumber, sunflower, and wheat seeds and significantly reduced in colonization of corn and cowpea seeds relative to strain 501R3. Populations of strain A145 were also significantly lower than those of strain 501R3 at all sampling times in cucumber, wheat, and sunflower rhizosphere. Populations of strain A145 were not detectable in any rhizosphere after 42 days, while populations of strain 501R3 remained at substantial levels throughout all experiments. Molecular characterization of strain A145 indicated mini-Tn5 Km was inserted in a region of the E. cloacae genome with a high degree of DNA and amino acid sequence similarity to rpiA, which encodes ribose-5-phosphate isomerase. In Escherichia coli, RpiA catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate and is a key enzyme in the pentose phosphate pathway. Ribose-5-phosphate isomerase activity in cell lysates from strain A145 was approximately 3.5% of that from strain 501R3. In addition, strain A145 was a ribose auxotroph, as expected for an rpiA mutant. Introduction of a 1.0-kb DNA fragment containing only the rpiA homologue into strain A145 restored ribose phosphate isomerase activity, prototrophy, seedling colonization, and disease suppression to levels similar to those associated with strain 501R3. Experiments reported here indicate a key role for rpiA and possibly the pentose phosphate pathway in suppression of damping-off and colonization of subterranean portions of plants by E. cloacae.  相似文献   

16.
A steady state kinetic investigation of the P(i) activation of 5-phospho-d-ribosyl alpha-1-diphosphate synthase from Escherichia coli suggests that P(i) can bind randomly to the enzyme either before or after an ordered addition of free Mg(2+) and substrates. Unsaturation with ribose 5-phosphate increased the apparent cooperativity of P(i) activation. At unsaturating P(i) concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with P(i) directs the subsequent ordered binding of Mg(2+) and substrates via a fast pathway, whereas saturation with ribose 5-phosphate leads to the binding of Mg(2+) and substrates via a slow pathway where P(i) binds to the enzyme last. The random mechanism for P(i) binding was further supported by studies with competitive inhibitors of Mg(2+), MgATP, and ribose 5-phosphate that all appeared noncompetitive when varying P(i) at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing P(i) concentrations. Results from ADP inhibition of P(i) activation suggest that these effectors compete for binding to a common regulatory site.  相似文献   

17.
The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and the crystal structure determined. The enzyme is activated by phosphate ions and only ATP or dATP serve as diphosphoryl donors. The K(m) values are determined as 2.6 mM and 2.8 mM for ATP and ribose 5-phosphate, respectively, and the V(max) value as 2.20 mmol (minxmg of protein)(-1). ADP is a potent inhibitor of activity while GDP has no effect. A single ADP binding site, the active site, is present per subunit. The crystal structure of the enzyme reveals a more compact subunit than that of the enzyme from the mesophile Bacillus subtilis, caused by truncations at the N and C terminus as well as shorter loops in the M.jannaschii enzyme. The M.jannaschii enzyme displays a tetrameric quaternary structure in contrast to the hexameric quaternary structure of B.subtilis PRPP synthase. Soaking of the crystals with 5'-AMP and PRPP revealed the position of the former compound as well as that of ribose 5-phosphate. The properties of M.jannaschii PRPP synthase differ widely from previously characterised PRPP synthases by its tetrameric quaternary structure and the simultaneous phosphate ion-activation and lack of allosteric inhibition, and, thus, constitute a novel class of PRPP synthases.  相似文献   

18.
Ribose-5-phosphate isomerase A (RpiA) plays an important role in interconverting between ribose-5-phosphate (R5P) and ribulose-5-phosphate in the pentose phosphate pathway and the Calvin cycle. We have determined the crystal structures of the open form RpiA from Vibrio vulnificus YJ106 (VvRpiA) in complex with the R5P and the closed form with arabinose-5-phosphate (A5P) in parallel with the apo VvRpiA at 2.0 Å resolution. VvRpiA is highly similar to Eschericihia coliRpiA, and the VvRpiA-R5P complex strongly resembles the E. coli RpiA-A5P complex. Interestingly, unlike the E. coli RpiA-A5P complex, the position of A5P in the VvRpiA-A5P complex reveals a different position than the R5P binding mode. VvRpiA-A5P has a sugar ring inside the binding pocket and a phosphate group outside the binding pocket: By contrast, the sugar ring of A5P interacts with the Asp4, Lys7, Ser30, Asp118, and Lys121 residues; the phosphate group of A5P interacts with two water molecules, W51 and W82.  相似文献   

19.
Pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the synthesis of pyridoxal 5'-phosphate. The cDNA for the human enzyme has been cloned and expressed in Escherichia coli. The purified human enzyme is a homodimer that exhibits a low catalytic rate constant of approximately 0.2 sec(-1) and K(m) values in the low micromolar range for both pyridoxine 5'phosphate and pyridoxamine 5'-phosphate. Pyridoxal 5'-phosphate is an effective product inhibitor. The three-dimensional fold of the human enzyme is very similar to those of the E. coli and yeast enzymes. The human and E. coli enzymes share 39% sequence identity, but the binding sites for the tightly bound FMN and substrate are highly conserved. As observed with the E. coli enzyme, the human enzyme binds one molecule of pyridoxal 5'-phosphate tightly on each subunit.  相似文献   

20.
BACKGROUND: 3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg(2+) for activity. RESULTS: The first three-dimensional structure of the enzyme was determined at 1.4 A resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an alpha + beta fold having a complex linkage of beta strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. CONCLUSIONS: A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg(2+) cofactor within the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号