首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolution of a disrupted TAR RNA hairpin structure in the HIV-1 virus.   总被引:13,自引:2,他引:13       下载免费PDF全文
B Klaver  B Berkhout 《The EMBO journal》1994,13(11):2650-2659
  相似文献   

2.
Evolution of transfer RNA   总被引:8,自引:0,他引:8  
Evolution by gene duplication and subsequent divergence is indicated by similarities common to 43 different transfer RNAs. Pairwise comparisons of these tRNAs reveal additional similarity, greatest for certain pairs of tRNAs for the same amino acid in the same organism, and also occurring in certain pairs of tRNAs for different amino acids in the same organism. Although tRNAs functionally interact with several other molecules, there have been surprisingly few restrictions on the divergence of their primary structures. This divergence has proceeded so far that clear phylogenetic separations are absent in most cases: it it impossible to construct a coherent phylogeny for most of the 43. Selection and stochastic processes have both been active in the evolution of tRNA. Selection has favored moderate change more than expected and has reduced radical change below that expected from stochastic processes alone. Two obvious effects of selection are nine invariant loci, another five that are always purines and five others that are always pyrimidines, in the tRNAs involved in protein synthesis. In addition to these constraints in the primary nucleotide sequence, the method of “identical site equivalents”, introduced here, demonstrates that further constraints exist equivalent to about 12 additional invariant loci. These “invisible” restraints reflect disperse chemical forces maintaining the tertiary structure and reducing evolutionary divergence to an extent quantitatively comparable to that of the nine observable invariant loci. The average divergence (49·4%) for pairs of tRNAs for different amino acids involved in protein synthesis represents an equilibrium between natural selection and stochastic processes. These tRNAs have had time to diverge nearly to the 75% maximum expected from stochastic process alone; this is shown by comparing the two glycine tRNAs involved in peptidoglycan synthesis with tRNAs for different amino acids participating in polypeptide synthesis. The rates of nucleotide replacements in genes coding for the tRNAs and the cytochromes c are about the same: 2 × 10 ?10 replacements per nucleotide site per year.  相似文献   

3.
Evolution of sex in RNA viruses   总被引:5,自引:0,他引:5  
The distribution of deleterious mutations in a population of organisms is determined by the opposing effects of two forces, mutation pressure and selection. If mutation rates are high, the resulting mutation-selection balance can generate a substantial mutational load in the population. Sex can be advantageous to organisms experiencing high mutation rates because it can either buffer the mutation-selection balance from genetic drift, thus preventing any increases in the mutational load (Muller, 1964: Mut. Res. 1, 2), or decrease the mutational load by increasing the efficiency of selection (Crow, 1970: Biomathematics 1, 128). Muller's hypothesis assumes that deleterious mutations act independently, whereas Crow's hypothesis assumes that deleterious mutations interact synergistically, i.e., the acquisition of a deleterious mutation is proportionately more harmful to a genome with many mutations than it is to a genome with a few mutations. RNA viruses provide a test for these two hypotheses because they have extremely high mutation rates and appear to have evolved specific adaptations to reproduce sexually. Population genetic models for RNA viruses show that Muller's and Crow's hypotheses are also possible explanations for why sex is advantageous to these viruses. A re-analysis of published data on RNA viruses that are cultured by undiluted passage suggests that deleterious mutations in such viruses interact synergistically and that sex evolved there as a mechanism to reduce the mutational load.  相似文献   

4.
Viruses can reproduce sexually. Sex in some RNA viruses is so different from sex in eukaryotes that it may have evolved independently. Yet, recent research indicates that sex in both groups can be accounted for by models of either positive or purifying selection. This review appraises the role that these types of selection may have played in the evolution of sex in RNA viruses.  相似文献   

5.
RNA helicases: modulators of RNA structure   总被引:13,自引:0,他引:13  
RNA molecules play an essential role in many cellular processes, often as components of ribonucleoprotein complexes. Like proteins, RNA molecules adopt sequence-specific secondary and tertiary structures that are essential for function; alteration of these structures therefore provides a means of regulating RNA function. The discovery of DEAD box proteins, a large family of proteins that share several highly conserved motifs and have known or putative ATP-dependent RNA helicase activity, has provoked growing interest in the concept that regulation of RNA function may occur through local unwinding of complex RNA structures.  相似文献   

6.

Background

Gene conversion is the mechanism proposed to be responsible for the homogenization of multigene families such as the nuclear ribosomal gene clusters. This concerted evolutionary process prevents individual genes in gene clusters from accumulating mutations. The mechanism responsible for concerted evolution is not well understood but recombination during meiosis has been hypothesized to play a significant role in this homogenization. In this study we tested the hypothesis of unequal crossing over playing a significant role in gene conversion events within the ribosomal RNA cistron during meiosis, mitosis or both life stages in the fungal tree pathogen Ceratocystis manginecans.

Methods

Ceratocystis manginecans, a haploid ascomycete, reproduces homothallically and was found to have two distinct sequences within the internally transcribed spacer (ITS) region of the ribosomal RNA cistron. The different ITS types were scored using PCR-RFLP assays and chi-square analyses to determine the level of significance of the changes in the ratios of the ITS types.

Results

The relative ratios of the two ITS sequence types changed when the fungal isolates were cultured vegetatively or allowed to produced sexual structures and spores. These active changes were shown to occur more frequently during meiosis than mitosis.

Conclusion

The evidence presented provides concrete support for homogenization in the rRNA gene clusters found in this fungus and that the most reasonable explanation for this process is unequal crossing over.  相似文献   

7.
Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.  相似文献   

8.
9.
Viruses vastly outnumber their host cells and must present a huge selective pressure. It is also becoming evident that only a small percent of the eukaryotic genome codes for molecules involved in cellular structures and functions, and that much of the remainder may have a viral origin. Viruses clearly play a central role in the biosphere, but how is this viral world organized? Classification was originally based on virus morphology and the particular host infected, but now there is an increasing trend to rely on sequence information. The type of genome (e.g., RNA or DNA, single- or double-stranded) provides fundamental classification criteria, while sequence comparisons can provide fine mapping for closely related viruses. However, it is currently very difficult to identify long-range evolutionary relationships. We present here a different approach, based on the idea that each virus has an innate "self." When the structures and functions characteristic of this "self" are identified, then they uncover relationships beyond those accessible from sequence information alone. The new approach is illustrated by sketching some possible viral lineages. We propose that urviruses were present before the division of cellular life into its current domains, and that the viral world has lineages that can be traced back to the root of the universal tree of life.  相似文献   

10.
11.
Evolution of four types of RNA editing in myxomycetes   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

12.
This paper develops Belozersky’s early idea of the precedence of RNA in the origin of life on the Earth. Based on the current knowledge of the functional omnipotence of RNA, three new mechanisms are considered that could be critical for the origin and evolution of the ancient RNA world: (1) the reaction of spontaneous transesterification of polyribonucleotides in aqueous media, which has been recently discovered by A.B. Chetverin and colleagues and could result in elongation of short initial oligoribonucleotides and generate sequence variants for further selection; (2) compartmentation of functional RNA ensembles in the form of mixed molecular colonies on moist mineral surfaces, in the absence of membranes and other envelopes; and (3) systematic exponential enrichment of an RNA population with “ functionally the best” molecules due to alternating dissolution of the colonies upon flooding and formation of new colonies upon drying in ancient pools (“primordial natural SELEX”).__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 550–556.Original Russian Text Copyright © 2005 by Spirin.  相似文献   

13.
The recently discovered hepatitis G virus (HGV) or GB virus C (GBV-C) is widely distributed in human populations, and homologues such as HGV/GBV-CCPZ and GBV-A are found in a variety of different primate species. Both epidemiological and phylogenetic analyses support the hypothesis that GB viruses coevolved with their primate hosts, although their degree of sequence similarity appears incompatible with the high rate of sequence change of HGV/GBV-C over short observation periods. Comparison of complete coding sequences (8,500 bases) of different genotypes of HGV/GBV-C showed an excess of invariant synonymous sites (at 23% of all codons) compared with the frequency expected by chance (10%). To investigate the hypothesis that RNA secondary-structure formation through internal base pairing limited sequence variability at these sites, an algorithm was developed to detect covariant sites among HGV/GBV-C sequences of different genotypes. At least 35 covariant sites that were spatially associated with potential stem-loop structures were detected, whose positions correlated with positions in the genome that showed reductions in synonymous variability. Although the functional roles of the predicted secondary structures remain unclear, the restriction of sequence change imposed by secondary-structure formation provides a mechanism for differences in net rate of accumulation of nucleotide substitutions at different sites. However, the resulting disparity between short- and long-term rates of sequence change of HGV/GBV-C violates the assumptions of the "molecular clock." This places a major restriction on the use of nucleotide or amino acid sequence comparisons to calculate times of divergence of other viruses evolving under the same structural constraints as GB viruses.  相似文献   

14.
Summary We have built the phylogenetic tree of Vertebrate 5S RNA using the sequence data of thirteen species belonging to six groups. Evolution of the 5S genes has been very slow in Vertebrates since 90 residues are identical in all 5S RNAs which are presently sequenced.In Amphibians and Teleosts different 5S genes are active in oocytes and in somatic cells. This dual gene system has probably been acquired independently by Amphibians and Teleosts. In Amphibians, the oocyte-type 5S genes have evolved much faster than the somatic-type genes. This is not true in all species since the oocyte-type genes of one Teleost (Tinca tinca) have evolved more slowly than the somatic-type genes.There are in all Vertebrate 5S RNAs five complementary regions which can be base-paired. The sequence data are compatible with the three secondary-structure models that have been proposed for 5S RNA.  相似文献   

15.
A hallmark of the infectious cycle for many RNA viruses parasitizing multicellular hosts is the need to invade and successfully replicate in tissues that comprise a variety of cell types. Thus, multicellular hosts represent a heterogeneous environment to evolving viral populations. To understand viral adaptation to multicellular hosts, we took a double approach. First, we developed a mathematical model that served to make predictions concerning the dynamics of viral populations evolving in heterogeneous environments. Second, the predictions were tested by evolving vesicular stomatitis virus in vitro on a spatially structured environment formed by three different cell types. In the absence of gene flow, adaptation was tissue-specific, but fitness in all tissues decreased with migration rate. The performance in a given tissue was negatively correlated with its distance to the tissue hosting the population. This correlation decreased with migration rate.  相似文献   

16.
Evolution and Diversification of RNA Silencing Proteins in Fungi   总被引:8,自引:0,他引:8  
Comprehensive phylogenetic analyses of fungal Argonaute, Dicer, and RNA-dependent RNA polymerase-like proteins have been performed to gain insights into the diversification of RNA silencing pathways during the evolution of fungi. A wide range of fungi including ascomycetes, basidiomycetyes, and zygomycetes possesses multiple RNA silencing components in the genome, whereas a portion of ascomycete and basidiomycete fungi apparently lacks the whole or most of the components. The number of paralogous silencing proteins in the genome differs considerably among fungal species, suggesting that RNA silencing pathways have diversified significantly during evolution in parallel with developing the complexity of life cycle or in response to environmental conditions. Interestingly, orthologous silencing proteins from different fungal clades are often clustered more closely than paralogous proteins in a fungus, indicating that duplication events occurred before speciation events. Therefore, the origin of multiple RNA silencing pathways seems to be very ancient, likely having occurred prior to the divergence of the major fungal lineages. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Rüdiger Cerff]  相似文献   

17.
18.
RNA structure formation is hierarchical and, therefore, secondary structure, the sum of canonical base-pairs, can generally be predicted without knowledge of the three-dimensional structure. Secondary structure prediction algorithms evolved from predicting a single, lowest free energy structure to their current state where statistics can be determined from the thermodynamic ensemble. This article reviews the free energy minimization technique and the salient revolutions in the dynamic programming algorithm methods for secondary structure prediction. Emphasis is placed on highlighting the recently developed method, which statistically samples structures from the complete Boltzmann ensemble.  相似文献   

19.
《The EMBO journal》1986,5(9):2417
[This corrects the article on p. 1111 in vol. 5, PMID: 3720727.].  相似文献   

20.
The k-junction is a structural motif in RNA comprising a three-way helical junction based upon kink turn (k-turn) architecture. A computer program written to examine relative helical orientation identified the three-way junction of the Arabidopsis TPP riboswitch as an elaborated k-turn. The Escherichia coli TPP riboswitch contains a related k-junction, and analysis of >11 000 sequences shows that the structure is common to these riboswitches. The k-junction exhibits all the key features of an N1-class k-turn, including the standard cross-strand hydrogen bonds. The third helix of the junction is coaxially aligned with the C (canonical) helix, while the k-turn loop forms the turn into the NC (non-canonical) helix. Analysis of ligand binding by ITC and global folding by gel electrophoresis demonstrates the importance of the k-turn nucleotides. Clearly the basic elements of k-turn structure are structurally well suited to generate a three-way helical junction, retaining all the key features and interactions of the k-turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号