首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colicinogenic B factor, transferred from Escherichia coli strain K77 (and termed ColB2-K77 or ColB2) to an E. coli K12 F(-) strain, is capable of promoting its own transfer to other K12 F(-) strains at a low rate (from LFC cultures) which can be increased under special conditions (HFC cultures). LFC cultures of K12 (ColB2)(+) F(-) strains show a low level of adsorption of F-specific phage particles which also increases under HFC conditions. The ColB2 factor is thus inferred to be an F-like sex factor which is repressed in its fertility. This repression is concluded to be due to a cytoplasmic repressor since, when ColB2 is present in cells containing an F factor (either autonomous or integrated), F fertility is also repressed as shown by the inability of such (ColB2)(+)F(+) [or (ColB2)(+)Hfr] strains to plaque F-specific phages, and by a reduction in the level of chromosomal transfer from such strains, compared to the corresponding F(+) (or Hfr) control strains. Mutants of the ColB2 factor in which fertility is no longer repressed (fertility derepressed or Fdr mutants) have been isolated. The ColB2Fdr mutant strains do not appear to be able to mobilize chromosomal transfer, although they have acquired F-specific phage sensitivity demonstrable by plaque formation and they transfer their colicin factor at high frequency and are well piliated. The Fdr mutation is presumed to result in the inability to synthesize the cytoplasmic fertility repressor since the ColB2Fdr factor does not repress the fertility of an F factor when present in the same host strain. A fertility-repressed drug resistance factor of the R(f) type is not stable in the presence of a ColB2 factor in the same cell and is eliminated in about 10% of the cells per generation. In contrast, another factor characteristic of the R(i) type is fully compatible with ColB2. Under conditions artificially stabilizing (ColB2Fdr)(+) (Rf)(+) strains, the enhanced fertility of ColB2Fdr is not repressed by the presence of the R factor, nor does the presence of R(f) in the intermediate strain of an HFC (for ColB2) system inhibit the normal increase in ColB2 transmissibility. It is concluded that the repressors of R(f) and ColB2, although both active on F fertility, are different; this may indicate that at least two independently repressible cistrons are involved in the expression of fertility characteristics.  相似文献   

2.
Effect on Exclusion of Alterations to the Sex Pilus   总被引:3,自引:1,他引:2  
Chromosomal genes from an Hfr donor, dependent for their transfer upon the integrated F factor, were not excluded by an F(+) recipient when the donor also carried an F-like R factor, and its sex pili contained, in addition to F pilin, another pilin of a different specificity.  相似文献   

3.
From F(+) strains of Salmonella typhimurium, isolates were obtained representing two new classes of Hfr strains, HfrK1 and HfrK2, in which the insertion of the F factor into the rfa genes results in chromosome mobilization either clockwise or anticlockwise from rfa, and in the Rfa phenotype. The point of insertion of the F factor into the cluster of rfa genes, revealed by studies of the early transfer of their normal alleles, is as follows: xyl-cysE-rfa-657 (HfrK2-1, SA540 -->)-(<-- HfrK1-1, SA458)-rfaG-(<-- HfrK1-2, SA464)-pyrE-metA  相似文献   

4.
Ganesan, Ann K. (Syntex Institute of Molecular Biology, Palo Alto, Calif.), and Boris Rotman. Transfer and incorporation of genes controlling beta-d-galactosidase synthesis from Hfr and F' donors of Escherichia coli. J. Bacteriol. 92:1378-1382. 1966.-Comparisons were made between Hfr(1) and F(13) donors with respect to the frequency of transfer and incorporation of genes controlling beta-d-galactosidase synthesis. The Hfr(1) donor transfers these genes as part of the chromosome, and the F(13) donor transfers them by F-duction. The criterion used for gene transfer was the acquisition by recipient cells of the ability to synthesize the enzyme, beta-d-galactosidase, measured by fluorogenic assays at the single-cell level. The criterion for incorporation was the formation of lac(+) recombinant colonies. It was found that the two types of donor showed the same frequency of gene transfer, but the probability of incorporation was 10-fold higher in F(13) matings than in Hfr(1) matings. In the former, between 46 and 97% of the merozygotes produced recombinant colonies; in the latter, 2 to 6% did so.  相似文献   

5.
Description of an incompatibility mutant of Escherichia coli   总被引:12,自引:9,他引:3       下载免费PDF全文
A mutant Hfr strain of Escherichia coli which has an impaired incompatibility function but is normal for other F factor functions has been isolated. This Inc(-) Hfr permits the maintenance and transfer of both the integrated F factor and an F' factor. F' factors have been isolated from the integrated F factor of the Inc(-) Hfr strain. When these episomes were tested in matings with Hfr or F' strains, they did not differ in any observed way from wild-type F' factors.  相似文献   

6.
Plasmid Specificity of The Origin of Transfer of Sex Factor F   总被引:6,自引:4,他引:2       下载免费PDF全文
The ability of F-like plasmids to promote transfer from the F origin of transfer was determined. Chromosome transfer was measured from plasmid derivatives of RecA(-) Hfr deletion strains which had lost all the F transfer genes but which in some cases retained, and in others had also lost, the origin sequence. ColV2 and ColVBtrp could initiate transfer from the F origin, but R100-1, R1-19, and R538-1 drd could not. These results can be correlated with the plasmid specificity of the traI components of the different plasmid transfer systems, supporting the hypothesis that the origin of transfer is the site of action of the traI product. Most F-like plasmids, including R1-19 and R538-1 drd, could transfer ColE1, consistent with previous findings that the (plasmid-specific) traI product is not necessary for ColE1 transfer by Flac; ColE1 transfer may be initiated by a ColE1-or host-determined product. R100-1 and R136fin(-) could not transfer ColE1 efficiently, apparently because of differences residing in their pilus-forming genes.  相似文献   

7.
The isolation of a rec(-) Hfr strain of Escherichia coli K-12 is described. The method used consisted of mating AB2463 F(-) Rec(-) His(-) Lac(-) with P4X6 Hfr Rec(+) His(+) Lac(+), selecting Rec(-) His(-) Lac(+) recombinants, and searching for Hfr strains. One Hfr rec(-) strain, no. 12, was used as donor in crosses with Rec(+) and Rec(-) recipients. Crosses with Rec(+) recipients are fertile, and those with Rec(-) recipients are almost infertile, the frequency of recombinants being 10(-2) to 10(-3) that found with Rec(+) recipients. The Rec(-) mutant marker is transfered to and integrated into Rec(+) recipients. Zygotic induction of prophage lambda is observed in crosses between two Rec(-) strains. In crosses of F(-) Rec(-) with Hfr Rec(-), the gradient of integration frequencies for markers progressively more distant from the origin is steeper than in the Rec(+) x Rec(-) or the Rec(-) x Rec(+) crosses.  相似文献   

8.
Mutants of E. coli K12 that overproduce ornithine transcarbamylase can be identified in Car- strains because they permit utilization of citrulline as a carbamyl phosphate source, due to reversal of the normal OTCase reaction; they are called Cut mutants (citrulline utilizers). Hfr strains that carry the F factor adjacent to argF (one of two duplicate genes that code for ornithine transcarbamylase in E. coli K12) yield more Cut mutants than do F+ or F- strains, or Hfr strains in which the F factor is not adjacent to argF. When Hfr strains in which the F factor is integrated adjacent to argF are made recA, they yield few Cut mutants. Many of the Cut mutants recovered from one of the Hfr strains used in the investigation (Hfr P4X) are unstable; the properties of these unstable mutations suggest that they carry aberrations in the region of the argF gene. Thus, the increased yields of Cut mutants probably result from aberrations that occur when the F factor is integrated adjacent to argF. The nature of these aberrations is not yet known. The unstable Cut mutants are to a large extent stabilized by recA; such stabilization is one of the properties of duplications. Other data indicate that the aberrations may be more complex than simple gene duplications; in particular properties of segregants and some recombinants derived from unstable Cut mutants are most easily interpreted by assuming that segregation from, and possibly formation of, the unstable mutants occurs in several stages.  相似文献   

9.
Rare conjugational progeny formed by crossing each of five Hfr strains with a recA-F- strain have been characterized. Selection was made for a proximal Hfr marker, taking strict precautions to prevent transfer of recA+ to the zygotes. Most of the progeny were found to be F' strains containing deletion mutant plasmids. With two exceptions, these mutant plasmids have lost all of the tra genes, which are required to confer conjugational donor ability upon a host. In addition, all but the exceptional mutant plasmids were found to be very poorly transmissible from transient heterozygotes which also contain a wild-type F' plasmid. The poor transmissibility is a cis-dominant transfer-defective phenotype which may result from deletion of all or part of the origin of transfer replication (ori), or of a gene determining a cis-acting protein. The two exceptional mutant plasmids may carry short deletions of some of the tra genes or polar tra mutations. The remaining progeny were nonmutant F' strains and F- strains. The frequency with which the F- strains were recovered permits us to estimate that the maximum amount of recombination possible in a recA56 zygote is 10(-6) that of a recA+ zygote.  相似文献   

10.
Membrane preparations from radioactively labeled male and female strains of Escherichia coli K-12 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. An intensely labeled band corresponding to a protein of molecular weight of 24,000 was readily apparent in preparations from Hfr and F-prime strains but not in those from female strains. When preparations from a series of Hfr strains containing transfer operon deletions were examined, presence of the band was found to be associated with retention of the region of the F transfer operon between ilzA and traD. Thus, the band ("protein S") appears to be the product of an F tra operon activity corresponding to traS (the gene for surface or entry exclusion), or an unknown gene in its vicinity. As predicted, protein S was subject to Fin+ control; only a faint band was detectable if the repressed plasmid R100 was also present in the F lac strain. A 24,000-dalton protein was also found in membrane preparations from strains carrying the derepressed plasmids R100-1 and R1-19 but not in those from strains carrying the repressed plasmids R100 or R1. Thus, the appearance of protein S in the membrane may be a general phenomenon resulting from transfer operon expression of F-like plasmids.  相似文献   

11.
Summary Sixty-eight Hfr strains were examined for their ability to transfer early in conjugation the transfer genes carried by the integrated sex factor. This was measured by mating these strains with F- phenocopied recipient cultures of strains carrying transfer-deficient Flac + factors, and then measuring the ability of the recipient strains to transfer lac + to a further recipient strain. Most Hfr strains did not complement the missing transfer functions, though in some strains complementation was observed. It is concluded that on the sex factors of different Hfr strains either the site at which integration occurs or the origin of transfer must vary.  相似文献   

12.
Experiments were carried out attempting to determine whether part of sex factor is transferred at the leading end of the Hfr chromosome during conjugation. In the first experiment, an analysis was made of the donor properties of recombinant strains which had inherited the terminal but not the proximal marker from an Hfr. Secondly, recombinants integrating an extremely proximal marker from an Hfr were examined for the inheritance of a sex factor affinity locus adjacent to this marker. In the third experiment, proximal transfer of the wild-type allele of a temperature-sensitive sex factor mutation was looked for, using as recipient a temperature-sensitive Hfr strain, and as donor a wild-type Hfr isogenic with respect to the site of sex factor integration. In none of these experiments could the presence of sex factor material at the leading end be demonstrated. The results do not rule out the possibility that part of F is transferred proximally but only integrated at a very low frequency. They do, however, conflict with certain findings of other authors which, in the past, have been taken as evidence for the transfer of part of F at the leading end.  相似文献   

13.
Hfr strains of Escherichia coli K-12 were found capable of accepting a F'lac episome during mating, with a frequency approximating that of F(-) strains. However, the F'lac episome was unable to replicate in the Hfr cells, and was diluted out during the growth of the culture. The lac(+) gene of the episome can be "rescued" by recombination into the host chromosome, as shown by the appearance of variegated recombinant colonies on a lactose-fermentation indicator medium. In recA Hfr strains, however, no lac(+) offspring were obtained in crosses with F'lac donors. The induced synthesis of beta-galactosidase in F'lac(+) x Hfr zygotes was studied. Rates of enzyme synthesis were approximately constant with respect to time as expected from unilinear inheritance of the F'lac episome. However, the rate of synthesis eventually increased, presumably due to integration of the lac(+) gene in some of the zygotes. In F'lac(+) x recA Hfr zygotes the rate of beta-galactosidase synthesis remained constant with respect to time, as expected.  相似文献   

14.
Integration of the factors F(v) and F into the chromosome of a substrain of Escherichia coli K-12 has been studied. The F(v) factor is a fertility factor derived from Col V, lacking the ability to govern the production of colicin V. The derivatives of an Hfr(v) (Hfr isolated from a V colicinogenic parent) strain, PK2 (initially isolated from C600 V(+)), were shown to retain a unique bidirectional sex factor affinity locus between recA and pheA. This site shows no affinity for the E. coli K-12 F factor as shown by inability to isolate Hfr strains with origins in this region from a parental strain containing a cytoplasmic F factor. However this area exhibits two regions of homology to the V colicinogenic factor. One gives rise to Hfr(v) strains identical to the original Hfr(v) strain, PK2, with an origin and polarity of transfer designated pheA-CC injecting markers in the order pheA-his-trp-pro. The second gives rise to strains apparently originating at the same site but with reverse polarity designated recA-C, transferring markers in the order recA-thyA-str-xyl. For strains possessing the F(v) factor only the second homology is apparent. A model for the evolution of these strains is presented.  相似文献   

15.
Recipient Gene Duplication during Generalized Transduction   总被引:2,自引:0,他引:2       下载免费PDF全文
M. Stodolsky 《Genetics》1974,78(3):809-822
An Hfr13 Delta(proA-lac) deletion recipient, -Delta(proA-lac)-F-purE(+)-, has been utilized in a study of the origins of duplications formed during chromosome fragment integration. Among the Pro(-)Lac(+) transductants, some have duplications spanning the F locus. These transductants are, or segregate, strains with F' episomes carrying genes of the duplication. Some of the duplications include purE(+), a gene which is not coinherited with lac(+) during bacteriophage P1-mediated transduction. Thus recipient genes have been duplicated during recombinant formation. Crossing-over models including replication steps provide a basis for explaining the duplication process.  相似文献   

16.
Several strains of Escherichia coli K-12 harboring two F factors were isolated from Hfr x Hfr crosses. These strains were transiently capable of initiating chromosome transfer from two separate points of origin, and of transferring two different sex factors as integrated chromosomal markers. Each strain tested invariably reverted to a simple Hfr by loss of one of the inherited F factors. The F factor persisting in the revertant was, in nearly every case, that which had been inherited from the recipient Hfr parent.  相似文献   

17.
Data are presented suggesting that the most critical factor determining whether an Hfr dnaAts strain can synthesize deoxyribonucleic acid and form colonies at temperatures that are nonpermissive for corresponding F- strains is neither the site of insertion of F nor the presence of additional mutations in the F particle or the chromosome; it is whether the particle is capable of autonomous replication at the temperature used. Consequently, suppression of the DnaA phenotype in Hfr strains occurs at 40 C but not, in most of them, at 42 C without the occurrence of additional mutations. The site of insertion of F may also be important since it is shown that in one Hfr dnaA strain partial suppression does occur at 42 C. In addition, it is shown that strains exhibiting suppression by integration of F at 40 C on minimal agar plates do not do so at this temperature on nutrient agar plates.  相似文献   

18.
A series of Hfr deletion strains carrying deletions extending different distances into the integrated F factor have been used to map loci for surface exclusion (traS) and for incompatibility (inc) on the Escherichia coli K-12 sex factor F. traS mapped between traG and traD. It forms a part of the large operon, including all the known transfer genes except traJ, and is co-controlled with these. The product of traS is not required for formation of the F pilus. inc mapped between the phi(R) (11) locus and the origin of transfer; it is therefore one of the earliest loci transferred during conjugation.  相似文献   

19.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   

20.
Isolation and characterization of Hfr strains of Erwinia amylovora   总被引:3,自引:0,他引:3  
Hfr strains (Hfr 159 and its derivatives, Hfr 160 and Hfr 161) were constructed from Erwinia amylovora ICPB EA178 by introducing an Escherichia coli F'his+ plasmid and then selecting for integration of F'his+ after treatment with acridine orange. The Hfr strains were relatively stable upon repeated transfers on nonselective media. Interrupted mating experiments and analyses of inheritance of unselected markers showed that his+ is transferred by Hfr 159 as the proximal marker at a relatively high frequency (about 5 x 10(-4) recombinants per input donor cell), followed by ilv+, orn+, arg+, pro+, rbs+, met+, trp+, leu+, ser+, and thr+ (not necessarily in that precise order). The donor strains, previously constructed in E. amylovora by integration of F'lac+ from E. coli transfer cys+ as the proximal marker followed by ser+. Further analysis of one of those earlier donor strains, Hfr99, showed that ser+ is followed by arg+, orn+, met+, pro+, leu+, ilv+, rbs+, his+, trp+, and thr+ (not necessarily in that precise order). Thus, the Hfr strains constructed by integration of F'his+ are different, in terms of origin and direction of transfer, from those derived from integration of F'lac+. The applicability of these Hfr strains to mapping the genes on the E. amylovora chromosome is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号