首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional medicinal plants have a long history of therapeutic use. The beneficial health effects of medicinal plants rich in polyphenols are often attributed to their potent antioxidant activities, as established in vitro, since diets rich in polyphenols are epidemiologically associated with a decreased incidence of age-related diseases in humans. However, medicinal plants may also exert pro-oxidant effects that up-regulate endogenous protective enzymes. Care is needed when studying the biological effects of medicinal plants in cell culture because some polyphenols oxidize readily in culture media. This review summarizes the data we have obtained from in vitro and in vivo (Caenorhabditis elegans) studies examining the diverse effects of traditional medicinal plants and their modes of action.  相似文献   

2.
3.
Analysis of tea polyphenols   总被引:3,自引:0,他引:3  
Tea is the most highly consumed beverage in the world, other than water. However, unlike water, tea contains substantial amounts of polyphenols that have unique biological activities and may be responsible for many of the health benefits of tea. As a result, it is essential to be able to measure the various tea-associated polyphenols. Total polyphenol content is currently measured by using methodology based on reducing activity. Several HPLC systems with detectors that, collectively, have wide ranges in sensitivity have been developed for analysis of individual flavonoids in tea and biological samples, and for theaflavins in tea. Catechins also have been measured in plasma by solid phase extraction, addition of a chromophore, and colorimetric quantification. Except for theaflavins in tea, routine and robust methods for the measurement of polyphenol condensation products (dimers and thearubigens) in tea and biological samples have not been developed. Although in vitro and animal studies suggest substantial metabolism of flavonoids in the gastrointestinal tract, only a single HPLC procedure has been assembled for monitoring the metabolic products of quercetin in urine of human subjects.  相似文献   

4.
5.
The target of the present review is to draw attention to many critically important unsolved problems in the future development of medicinal mushroom science in the twenty-first century. Special attention is paid to mushroom polysaccharides. Many, if not all, higher Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelium, and cultured broth. The data on mushroom polysaccharides are summarized for approximately 700 species of higher Hetero- and Homobasidiomycetes. The chemical structure of polysaccharides and its connection to antitumor activity, including possible ways of chemical modification, experimental testing and clinical use of antitumor or immunostimulating polysaccharides, and possible mechanisms of their biological action, are discussed. Numerous bioactive polysaccharides or polysaccharide–protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses and exhibit antitumor activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has significant effects on the maturation, differentiation, and proliferation of many kinds of immune cells in the host. Many of these mushroom polymers were reported previously to have immunotherapeutic properties by facilitating growth inhibition and destruction of tumor cells. While the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom polymers appears central. Particularly and most importantly for modern medicine are polysaccharides with antitumor and immunostimulating properties. Several of the mushroom polysaccharide compounds have proceeded through phases I, II, and III clinical trials and are used extensively and successfully in Asia to treat various cancers and other diseases. A total of 126 medicinal functions are thought to be produced by medicinal mushrooms and fungi including antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, antihypercholesterolemia, antiviral, antibacterial, antiparasitic, antifungal, detoxification, hepatoprotective, and antidiabetic effects.  相似文献   

6.
《Free radical research》2013,47(9):667-671
Abstract

Green tea polyphenols, the most interesting constituent of green tea leaves, have been shown to have both pro-oxidant and antioxidant properties. Both pro-oxidant and antioxidant properties are expected to contribute to modulation of oxidative stress response under ideal optimal dosage regimens. Exposure to a low concentration of a pro-oxidant prior to exposure to oxidative stress induces the expression of genes that code for proteins that induce adaptation in a subsequent oxidative stress. On the other hand, exposure to an antioxidant concurrently with exposure to the oxidative stress affords protection through free radical scavenging or through other indirect antioxidant mechanisms. In any case, the optimal conditions that afford protection from oxidative stress should be defined for any substance with redox properties. Green tea polyphenols, being naturally occurring substances, seem to be an ideal option for the modulation of oxidative stress response. This paper reviews available data on the pro-oxidant and antioxidant properties of green tea polyphenols focusing on their potential on the modulation of oxidative stress response.  相似文献   

7.
A number of in vitro studies have shown that polyphenols and flavonoids in tea exert significant antioxidant activity. However, epidemiologic and experimental studies have produced conflicting results. The purpose of the present study was to compare the antioxidant activity of black tea in vitro with that ex vivo. Black tea polyphenols (BTP), black tea extract (BTE), or their major polyphenolic antioxidant constituent, epigallocatechin gallate (EGCG), were added to human plasma and lipid peroxidation was induced by the water-soluble radical generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Following a lag phase, lipid peroxidation was initiated and occurred at a rate that was lowered in a dose-dependent manner by BTP. Similarly, EGCG and BTE added to plasma in vitro strongly inhibited AAPH-induced lipid peroxidation. The lag phase preceding detectable lipid peroxidation was due to the antioxidant activity of endogenous ascorbate, which was more effective at inhibiting lipid peroxidation than the tea polyphenols and was not spared by these compounds. In contrast, when eight healthy volunteers consumed the equivalent of six cups of black tea, the resistance of their plasma to lipid peroxidation ex vivo did not increase over the next 3 h. These data suggest that, despite antioxidant efficacy in vitro, black tea does not protect plasma from lipid peroxidation in vivo. The striking discrepancy between the in vitro and ex vivo data is most likely explained by the insufficient bioavailability of tea polyphenols in humans.  相似文献   

8.
The wealth of epidemiological evidence in the scientific world underscores the possibility that a plant-based diet can reduce the prevalence of common diseases such as diabetes, cardiovascular disease, cancer, and stroke. The therapeutic effects of plant sources are partly explained by phenolic secondary metabolites or polyphenolic compounds. Therefore, polyphenolic compounds, which are widely distributed in plants, are of great interest for the development of effective specific drugs with antioxidant and anti-inflammatory effects. Moreover, polyphenol compounds have no harmful effects due to their natural biocompatibility and safety. Numerous studies have highlighted the potential of some industrial food wastes from plant material processing, including apple peels and mashed potatoes, grape skins, tomato and carrot peels, pomegranate peels and seeds, and many others. These byproducts are considered low-cost sources of natural biological compounds, including antioxidants, which have beneficial effects on human health.The polyphenol complex of pomegranate peel (Punica granatum L.), which makes up half of the pomegranate fruit, has more pronounced antioxidant and anti-inflammatory properties than other parts. And the most important active components of pomegranate peel, which are found only in this plant, are punicalagin, followed by ellagic acid and gallic acid. It is known that these polyphenolic compounds of pomegranate peel have the most pronounced therapeutic effect. Several studies have shown the protective effect of ellagic acid, punicalagin, against oxidative stress damage caused by free radicals. The potential of pomegranate peel as an antioxidant and therapeutic component in various biological systems is high, according to scientific sources.However, despite extensive research in recent years, a review of sources has shown that there is insufficient evidence to support the therapeutic effects of polyphenolic compounds from pomegranate peels. The role of pomegranate peel polyphenolic compounds, including flavonoids, as antioxidants in various biological systems also requires further research. Of particular importance are the mechanisms by which antioxidants influence the cellular response against oxidative stress. The purpose of this review was to report our current knowledge of plant polyphenolic compounds and their classification, and to evaluate the potential of phenolic compounds from pomegranate peels with significant antioxidant and therapeutic effects.  相似文献   

9.
The role of polyphenols in terrestrial ecosystem nutrient cycling   总被引:3,自引:0,他引:3  
Interspecific variation in polyphenol production by plants has been interpreted in terms of defense against herbivores. Several recent lines of evidence suggest that polyphenols also influence the pools and fluxes of inorganic and organic soil nutrients. Such effects could have far-ranging consequences for nutrient competition among and between plants and microbes, and for ecosystem nutrient cycling and retention. The significance of polyphenols for nutrient cycling and plant productivity is still uncertain, but it could provide an alternative or complementary explanation for the variability in polyphenol production by plants.  相似文献   

10.
Mechanisms of the anticancer effects of polyphenols, found in fruits, vegetables, spices and representing parts of daily nutrition, have been considered. These compounds may be the basis for the development of cancer preventive preparations. They can block initiation of carcinogenesis by inactivating exogenous or endogenous genotoxic molecules including reactive oxygen species (ROS). The other mechanism underlying polyphenol effects consists in inhibition of activity and synthesis of carcinogen-metabolizing enzymes. Plant polyphenols can induce expression of genes encoding antioxidant and detoxification enzymes and this also prevents initiation of carcinogenesis.  相似文献   

11.
Oxidative stress is a constant threat to all living organisms and an immense repertoire of cellular defense systems is being employed by most pro- and eukaryotic systems to eliminate or to attenuate oxidative stress. Ischemia and reperfusion is characterized by both a significant oxidative stress and characteristic changes in the antioxidant defense. By focusing on this antioxidant response of the cardiovascular system in the setting of ischemia-reperfusion injury, the aim of this review was threefold. First, based on recent animal experiments and clinical studies we shall discuss how endogenous antioxidants respond to oxidative stress during ischemia-reperfusion injury and highlight the results of recent trials on the ability of antioxidants to modulate ischemia-reperfusion injury. In this aspect, we will particularly focus on the emerging concept that various lines of antioxidant defenses do not act individually but are linked to each other in a systematic relationship as part of an antioxidant network. It is well known that enzymatic mechanisms are important components of the endogenous antioxidant repertoire; however, the relative importance of the different enzyme systems and isoforms has been much debated. The second part will focus on recent suggestions attributing a potentially key role of mitochondrial MnSOD in cardiac ischemia-reperfusion injury. Finally, the third part of the review will critically examine how endogenous antioxidants might regulate the complex signal transduction pathways of cellular activation with particular attention to the NF-kappaB and MAPK systems that appears to determine outcome of injury, survival, and adaptation.  相似文献   

12.
Wine polyphenols could reinforce the endogenous antioxidant system, thereby diminishing oxidative damage. Studies in chronic models to understand the relationship between the bioavailability of polyphenols and their biological effects are still lacking. The aim of the present study was to prove the hypothesis that the antioxidant capacity of wines in vitro is positively correlated with the antioxidant capacity of plasma and negatively correlated with tissue lipid peroxidation, after chronic wine consumption. Adult rats received: water (control group), wine having variable phenolic content, ethanol (12.5% v/v) or alcohol-free red wine, for 4 weeks. The antioxidant capacity of wines in vitro and that of plasma induced in vivo were assessed through the reduction of ferric iron (FRAP, ferric reducing ability of plasma). Lipid peroxidation (production of thiobarbituric acid reactive substances, TBARS), and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were determined in kidney, liver and lung. The phenolic content of wines was positively correlated with their FRAP values in vitro (r=0.407, p <0.002). Also, the relationship between wine FRAP in vitro to its respective plasma value in vivo showed a positive correlation (r=0.433, p <0.005). Phenolic concentration of wine did not influence the activity of CAT, SOD and GSH-Px of the three organs studied, but it was negatively correlated with their production of TBARS (r=-0.852, -0.891 and -0.790 for kidney, liver and lung, respectively, p <0.001). The present data provide evidence that the antioxidant capacity of wine in vitro implicates a homologous effect in vivo, thus helping to modulate tissue lipid peroxidation.  相似文献   

13.
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.  相似文献   

14.
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

15.
Potent inhibitory action of red wine polyphenols on human breast cancer cells   总被引:14,自引:0,他引:14  
Breast cancer (one of the most common malignancy in Western societies), as well as esophagus, stomach, lung, bladder, and prostate cancer, depend on environmental factors and diet for growth and evolution. Dietary micronutriments have been proposed as effective inhibitory agents for cancer initiation, progression, and incidence. Among them, polyphenols, present in different foods and beverages, have retained attention in recent years. Red wine is a rich source of polyphenols, and their antioxidant and tumor arresting effects have been demonstrated in different in vitro and in vivo systems. In the present study, we have measured the antiproliferative effect of red wine concentrate, its total polyphenolic pool, and purified catechin, epicatechin, quercetin, and resveratrol, which account for more than 70% of the total polyphenols in red wine, on the proliferation of hormone sensitive (MCF7, T47D) and resistant (MDA-MB-231) breast cancer cell lines. Our results indicate that polyphenols, at the picomolar or the nanomolar range, decrease cell proliferation in a dose- and a time-dependant manner. In hormone sensitive cell lines, a specific interaction of each polyphenol with steroid receptors was observed, with IC(50)s lower than previously described. Interaction of polyphenols with steroid receptors cannot fully explain their inhibitory effect on cell proliferation. In addition, discrete antioxidant action on each cell line was detected under the same concentrations, both by modifying the toxic effect of H(2)O(2), and the production of reactive oxygen species (ROS), after phorbol ester stimulation. Our results suggest that low concentrations of polyphenols, and consecutively, consumption of wine, or other polyphenol-rich foods and beverages, could have a beneficial antiproliferative effect on breast cancer cell growth.  相似文献   

16.
植物多酚是一类广泛存在于植物体内的物质,有许多有助于人类健康的效果。但是,多数的多酚和生物系统间的分子相互作用机制还尚不清楚。本文综述了几项目前已经确定的潜在作用机制,包括:①非特异性作用,如抗氧化作用与生物膜的作用;②特异性机制,如与酶,转录因子,受体的作用等;此外还介绍了其他的一些机制:如抑制甘油三酯消化吸收,促进肠道有益细菌生长等。对多酚和细胞成分作用产生的生物学影响的更好理解有助于发展预防和治疗人类疾病的营养学和药理学手段。  相似文献   

17.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

18.
Diets rich in polyphenols are epidemiologically associated with lower risk of developing some age-related diseases in humans. This apparent disease-protective effect of polyphenols is often attributed to their powerful antioxidant activities, as established in vitro. However, polyphenols can also exert pro-oxidant activities under certain experimental conditions. Neither pro-oxidant nor anti-oxidant activities have yet been clearly established to occur in vivo in humans, nor are they likely given the limited levels of polyphenols that are achievable in vivo after consumption of foods and beverages rich in them. Other actions of polyphenols may be more important in vivo. Many studies of the biological effects of polyphenols in cell culture have been affected by their ability to oxidise in culture media, and awareness of this problem can avoid erroneous claims.  相似文献   

19.
Role of plant polyphenols in genomic stability   总被引:19,自引:0,他引:19  
Ferguson LR 《Mutation research》2001,475(1-2):89-111
Polyphenols are a large and diverse class of compounds, many of which occur naturally in a range of food plants. The flavonoids are the largest and best-studied group of these. A range of plant polyphenols are either being actively developed or currently sold as dietary supplements and/or herbal remedies. Although, these compounds play no known role in nutrition (non-nutrients), many of them have properties including antioxidant, anti-mutagenic, anti-oestrogenic, anti-carcinogenic and anti-inflammatory effects that might potentially be beneficial in preventing disease and protecting the stability of the genome. However not all polyphenols and not all actions of individual polyphenols are necessarily beneficial. Some have mutagenic and/or pro-oxidant effects, as well as interfering with essential biochemical pathways including topoisomerase enzyme activities, prostanoid biosynthesis and signal transduction. There is a very large amount of in vitro data available, but far fewer animal studies, and these are not necessarily predictive of human effects because of differences in bacterial and hepatic metabolism of polyphenols between species. Epidemiological studies suggest that high green tea consumption in the Japanese population and moderate red wine consumption in the French population may be beneficial for heart disease and cancer, and these effects may relate to specific polyphenols. A small number of adequately controlled human intervention studies suggest that some, but not all polyphenol extracts or high polyphenol diets may lead to transitory changes in the antioxidative capacity of plasma in humans. However, none of these studies have adequately considered long-term effects on DNA or the chromosome and unequivocally associated these with polyphenol uptake. Furthermore, clinical trials have required intravenously administered polyphenols at concentrations around 1400mg/m(2) before effects are seen. These plasma concentrations are unlikely to be achieved using the dietary supplements currently available. More focused human studies are necessary before recommending specific polyphenolic supplements at specific doses in the human population.  相似文献   

20.
A substantial and growing consumer demand exists for plant-based functional foods that improve general health and wellbeing. Amongst consumed phytochemicals, the polyphenolic compounds tend to be the most bioactive. Many commonly consumed polyphenols have been shown to have specific and potent health-promoting activities when assessed by high-throughput in vitro assays and when administered to experimental animals by injection. However, very few have been shown to have any beneficial effects in animals or man when orally consumed, because of the poor bioavailability exhibited by most polyphenols following the ingestion. Consumed polyphenols, like most pharmaceuticals, are regarded as xenobiotics by the body and must overcome many barriers, including extensive enzymatic and chemical modification during digestion and absorption, to reach their site(s) of action. This is especially true for polyphenols targeting the brain, which is protected by the tightly regulated blood–brain barrier. Interestingly, many polyphenols are also known to specifically modify some of the metabolic and transport processes that govern bioavailability. Therefore, the opportunity exists to increase the bioactivity of beneficial polyphenols by designing specific synergistic interactions with polyphenols that improve their oral bioavailability. This hypothesis and review paper will discuss some of the endogenous systems that limit the bioavailability of ingested polyphenols to the body and the brain, and the means by which bioavailability may be improved by specifically designing synergies between orally consumed polyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号