首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid fibrils, similar to crystals, form through nucleation and growth. Because of the high free-energy barrier of nucleation, the spontaneous formation of amyloid fibrils occurs only after a long lag phase. Ultrasonication is useful for inducing amyloid nucleation and thus for forming fibrils, while the use of a microplate reader with thioflavin T fluorescence is suitable for detecting fibrils in many samples simultaneously. Combining the use of ultrasonication and microplate reader, we propose an efficient approach to studying the potential of proteins to form amyloid fibrils. With β2-microglobulin, an amyloidogenic protein responsible for dialysis-related amyloidosis, fibrils formed within a few minutes at pH 2.5. Even under neutral pH conditions, fibrils formed after a lag time of 1.5 h. The results propose that fibril formation is a physical reaction that is largely limited by the high free-energy barrier, which can be effectively reduced by ultrasonication. This approach will be useful for developing a high-throughput assay of the amyloidogenicity of proteins.  相似文献   

2.
Protein aggregation underlies an increasing number of human diseases. Recent experiments have shown that the aggregation reaction is exquisitely specific involving particular interactions between non-native proteins. However, aggregation of certain proteins, for example beta-amyloid, in vivo leads to the recruitment of other proteins into the aggregate. Antichymotrypsin, a non-fibril forming protein, is always observed to be associated with beta-amyloid plaques in Alzheimer's sufferers. The role of antichymotrypsin is controversial with studies showing it can either accelerate or inhibit the aggregation reaction. To investigate the role of antichymotrypsin in fibrillogenesis we have studied its interaction with apolipoprotein C-II, a well characterized model system for the study of fibrillogenesis. Our data demonstrate that sub-stoichiometric amounts of antichymotrypsin and its alternate structural forms can dramatically accelerate the aggregation of apolipoprotein C-II, whereas the presence of alpha(1)-antitrypsin, a structural homologue of antichymotrypsin, cannot. Sedimentation velocity experiments show more apolipoprotein C-II fibrils were formed in the presence of antichymotrypsin. Using pull-down assays and immuno-gold labeling we demonstrate an interaction between antichymotrypsin and apolipoprotein C-II fibrils that specifically occurs during fibrillogenesis. Taken together these data demonstrate an interaction between antichymotrypsin and apolipoprotein C-II that accelerates fibrillogenesis and indicates a specific role for accessory proteins in protein aggregation.  相似文献   

3.
Dialysis-related amyloidosis frequently develops in patients undergoing long-term hemodialysis, in which the major component of fibrils is β2-microglobulin (β2-m). To prevent the disease, it is important to stop the formation of fibrils. β2-m has one disulfide bond, which stabilizes the native structure, and amyloid fibrils. Here, the effects of reductants (i.e., dithiothreitol and cysteine) on the formation of β2-m amyloid fibrils were examined at neutral pH. Fibrils were generated by three methods: seed-dependent, ultrasonication-induced, and salt-and-heat-induced fibrillation. Thioflavin T fluorescence, electron microscopy, and far-UV circular dichroism revealed that the addition of reductants significantly inhibits seed-dependent and ultrasonication-induced fibrillation. For salt-and-heat-induced fibrillation, where the solution of β2-m was strongly agitated, formation of amyloid fibrils was markedly reduced in the presence of reductants, although a small number of fibrils formed even after the reduction of the disulfide bond. The results suggest that reductants such as cysteine and dithiothreitol would be useful for preventing the formation of β2-m amyloid fibrils under physiological conditions.  相似文献   

4.
AlphaB-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alphaB-crystallin in detail, and also that of alphaA-crystallin and the disease-related mutant R120G alphaB-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alphaB-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. (1)H NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alphaB-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils.  相似文献   

5.
The formation of amyloid fibrils and other polypeptide aggregates depends strongly on the physico-chemical environment. One such factor affecting aggregation is the presence and concentration of salt ions. We have examined the effects of salt ions on the aggregation propensity of Alzheimer's Abeta(1-40) peptide and on the structure of the dissolved and of the fibrillar peptide. All salts examined promote aggregation strongly. The most pronounced effect is seen within the cationic series, i.e. for MgCl2. Evaluation of different possible explanations suggests that Abeta(1-40) aggregation depends on direct interaction between ions and Abeta(1-40) peptide, and correlates with ion-induced changes of the surface tension. Salts have profound effects on the fibril structure. In the presence of salts, fibrils are associated with smaller diameters, narrower crossover distances and lower amide I maxima. Since Abeta(1-40) aggregation responds to salts in a manner unlike that for other polypeptides, such as glucagon, beta2-microglobulin or alpha-synuclein; these data argue that there is no fully uniform way in which salts affect aggregation of different polypeptide chains. These observations are important for understanding and predicting aggregation on the basis of simple physico-chemical properties.  相似文献   

6.
Thermodynamic parameters characterizing protein stability can be obtained for a fully reversible folding/unfolding system directly by differential scanning calorimetry (DSC). However, the reversible DSC profile can be altered by an irreversible step causing aggregation. Here, to obtain insight into amyloid fibrils, ordered and fibrillar aggregates responsible for various amyloidoses, we studied the effects on human beta(2)-microglobulin and hen egg-white lysozyme of a combination of agitation and heating. Aggregates formed by mildly agitating protein solutions in the native state in the presence of NaCl were heated in the cell of the DSC instrument. For beta(2)-microglobulin, with an increase in the concentration of NaCl at neutral pH, the thermogram began to show an exothermic transition accompanied by a large decrease in heat capacity, followed by a kinetically controlled thermal response. Similarly, the aggregated lysozyme at a high concentration of NaCl revealed a similar distinct transition in the DSC thermogram over a wide pH range. Electron microscopy demonstrated the conformational change into amyloid fibrils. Taken together, the combined use of agitation and heating is a powerful way to generate amyloid fibrils from two proteins, beta(2)-microglobulin and hen egg-white lysozyme, and to evaluate the effects of heat on fibrillation, in which the heat capacity is crucial to characterizing the transition.  相似文献   

7.
In the double-shelled capsid of Phytoreovirus, the outer capsid attaches firmly to the 3-fold axes of the T = 1 core. It then forms a T = 13 lattice via lateral interactions among the P8 trimers (Wu et al., 2000, Virology 271, 18-25). Purified P8 molecules also assemble into hexagonal monolayers as well as tubular crystals. To explore the mechanisms of formation of these structures, the configurations of P8 trimers were compared and verified in particles of Rice dwarf virus and in tubular crystals (tubes) whose structure was determined by cryoelectron microscopy using helical reconstruction technique. Remarkable variations in intertrimer contacts were observed in the tubes and in the surface lattice of Rice dwarf virus capsid. Superposition of the atomic structure of P8 trimers in the structures analyzed by cryoelectron microscopy allowed us to identify groups of specific and stable interactions, some of which were preserved in the tubes and the quasi-equivalent T = 13 icosahedral lattice of the virion's shell. The flexible nature of the binding between P8 trimers, created via electrostatic interactions that hold radially inward, appears to allow the outer-capsid P8 trimers to envelop the ragged surface of the core, forming the double shell of an intact viral particle.  相似文献   

8.
The effects of oleic acid on amyloid formation of Ca2+-depleted bovine alpha-lactalbumin (apo-BLA) at low pH and the biological impact of the effects were investigated by using thioflavin T, Congo red, far-UV circular dichroism, atomic force microscopy, transmission electron microscopy, and other biophysical methods. The results from the phase diagram method of fluorescence show that two intermediates exist in the conformational transition of apo-BLA induced by low pH. One intermediate populated at pH 3.0 is characterized as a molten globule state and the other accumulates with stable secondary structure and exposed hydrophobic surface at pH 4.0-4.5. Amyloid formation of apo-BLA takes place upon decreasing the pH to 4.5 and is accelerated remarkably as the pH is decreased further. However, amyloid fibrils of apo-BLA are not observed in the pH range of 5.0-7.0 on a time-scale of 30 days. The lag time of fibrillation at pH 4.0 is greatly elongated by the presence of oleic acid, accompanied by a remarkable decline of the maximum thioflavin T intensity. Furthermore, amyloid formation of apo-BLA at pH 4.5 is inhibited completely by oleic acid, and insoluble aggregates are observed. In contrast, the effects of oleic acid on amyloid formation are not remarkable at pH 3.0 or at pH 2.0. Our data demonstrate that oleic acid specifically induces the intermediate of apo-BLA at pH 4.0-4.5 to form insoluble amorphous aggregates, which is responsible for the inhibition of amyloid formation of the protein by oleic acid in this range of pH values.  相似文献   

9.
Yin FY  Chen YH  Yu CM  Pon YC  Lee HJ 《Biophysical journal》2007,93(4):1235-1245
Delta-crystallin is the major soluble protein in avian eye lenses with a structural role in light scattering. Dissociation and unfolding of the tetrameric protein in guanidinium chloride (GdmCl) can be sensitively monitored by the intrinsic tryptophan fluorescence. In this study refolding of GdmCl-denatured delta-crystallin was investigated. A marked hysteresis was observed while refolding by dilution of the 5 M GdmCl-denatured delta-crystallin. The secondary structure of the refolded protein was largely restored. However, monitoring intrinsic fluorescence of single tryptophan mutants indicated that the microenvironment of domain 1 (W74) was not restored. The region containing W169, which is close to the dimer interface, remained exposed following refolding. During refolding of the wild-type protein, dimeric, tetrameric, and aggregate forms were identified. The ratio of tetramer to dimer increased with time, as judged by gel-filtration chromatography and nondenaturing gel electrophoresis. However the observed levels of tetramer did not return to the same levels as observed before GdmCl treatment. The proportion of tetramer was significantly decreased in the N-25 deletion mutant and it did not increase with time. These results suggest that there is a kinetic barrier for assembly of dimers into tetramers. The consequence of this is that dimers refold to form aggregates. Aggregation seems to follow a nucleation mechanism with an apparent reaction order of 4.7+/-0.2, suggesting four or five monomers constitute the core structure of nucleus, which propagate to form high molecular weight aggregates. Addition of alpha-crystallin during refolding prevents aggregation. Thioflavin T and Congo red assays indicated a regular structure for the protein aggregates, which appear as hollow tubules packed into helical bundles. Aggregate formation was protein concentration dependent that progressed via two stages with rate constants of 0.0039+/-0.0006 and 0.00043+/-0.00003 s(-1), respectively. We propose that the N-terminal segment of delta-crystallin plays a critical role in proper double dimer assembly and also in the assembly of nucleus to aggregate formation.  相似文献   

10.
Deposition of amyloid fibrils consisting of amyloid β (Aβ) protein as senile plaques in the brain is a pathological hallmark of Alzheimer’s disease. However, a growing body of evidence shows that soluble Aβ oligomers correlate better with dementia than fibrils, suggesting that Aβ oligomers may be the primary toxic species. The structure and oligomerization mechanism of these Aβ oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of Aβ42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of Aβ sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for Aβ42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that Aβ42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS–PAGE shows that Aβ42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, Aβ40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of Aβ42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for Aβ42 oligomerization.  相似文献   

11.
The folding and interactions of amyloid proteins are at the heart of the debate as to how these proteins may or may not become toxic to their host. Although little is known about this issue, the structure seems to be clearly involved with effects on molecular events. To understand how an amyloid may be toxic, we previously generated a yeast toxic amyloid (mutant 8) from the nontoxic HET-s(218-289) prion domain of Podospora anserina. Here, we performed a comprehensive structure-toxicity study by mutating individually each of the 10 mutations found in mutant 8. The study of the library of new mutants generated allowed us to establish a clear link between Fourier transform infrared antiparallel signature and amyloid toxicity. All of the mutants that form parallel β-sheets are not toxic. Double mutations may be sufficient to shift a parallel structure to antiparallel amyloids, which are toxic to yeast. Our findings also suggest that the toxicity of antiparallel structured mutants may be linked to interaction with membranes.  相似文献   

12.
Prion diseases are infectious fatal neurodegenerative diseases including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. The misfolding and conversion of cellular PrP in such mammals into pathogenic PrP is believed to be the key procedure. Rabbits are among the few mammalian species that exhibit resistance to prion diseases, but little is known about the molecular mechanism underlying such resistance. Here, we report that the crowding agents Ficoll 70 and dextran 70 have different effects on fibrillization of the recombinant full-length PrPs from different species: although these agents dramatically promote fibril formation of the proteins from human and cow, they significantly inhibit fibrillization of the rabbit protein by stabilizing its native state. We also find that fibrils formed by the rabbit protein contain less β-sheet structure and more α-helix structure than those formed by the proteins from human and cow. In addition, amyloid fibrils formed by the rabbit protein do not generate a proteinase K-resistant fragment of 15–16-kDa, but those formed by the proteins from human and cow generate such proteinase K-resistant fragments. Together, these results suggest that the strong inhibition of fibrillization of the rabbit PrP by the crowded physiological environment and the absence of such a protease-resistant fragment for the rabbit protein could be two of the reasons why rabbits are resistant to prion diseases.  相似文献   

13.
Fibril fragmentation is considered to be an essential step in prion replication. Recent studies have revealed a strong correlation between the incubation period to prion disease and conformational stability of synthetic prions. To gain insight into the molecular mechanism that accounts for this correlation, we proposed that the conformational stability of prion fibrils controls their intrinsic fragility or the size of the smallest possible fibrillar fragments. Using amyloid fibrils produced from full-length mammalian prion protein under three growth conditions, we found a correlation between conformational stability and the smallest possible fragment sizes. Specifically, the fibrils that were conformationally less stable were found to produce shorter pieces upon fragmentation. Site-specific denaturation experiments revealed that the fibril conformational stability was controlled by the region that acquires a cross-β-sheet structure. Using atomic force microscopy imaging, we found that fibril fragmentation occurred in both directions—perpendicular to and along the fibrillar axis. Two mechanisms of fibril fragmentation were identified: (i) fragmentation caused by small heat shock proteins, including αB-crystallin, and (ii) fragmentation due to mechanical stress arising from adhesion of the fibril to a surface. This study provides new mechanistic insight into the prion replication mechanism and offers a plausible explanation for the correlation between conformational stability of synthetic prions and incubation time to prion disease.  相似文献   

14.
Czarna M  Jarmuszkiewicz W 《FEBS letters》2005,579(14):3136-3140
Mitochondria of amoeba Acanthamoeba castellanii were used to determine the role of two energy-dissipating systems, i.e., a free fatty acid (FFA)-activated, purine nucleotide-inhibited uncoupling protein (AcUCP) and a FFA-insensitive, purine nucleotide-activated ubiquinol alternative oxidase (AcAOX), in decreasing reactive oxygen species production in unicellular organisms. It is shown that the activation of AcUCP by externally added FFA resulted in a strong decrease in H2O2 production, whilst the inhibition of the FFA acid-induced AcUCP activity by GDP or addition of bovine serum albumin (BSA) enhanced production of H2O2. Similarly, the activation of antimycin-resistant AcAOX-mediated respiration by GMP significantly lowered H2O2 production, while inhibition of the oxidase by benzohydroxamate cancelled the GMP-induced effect on H2O2 production. When active together, both energy-dissipating systems revealed a cumulative effect on decreasing H2O2 formation. The results suggest that protection against mitochondrial oxidative stress may be a physiological role of AOX and UCP in unicellulars, such as A. castellanii.  相似文献   

15.
We investigated the interaction of 2,4,6-triiodophenol (TIP), a potent thyroid hormone disrupting chemical, with serum proteins from rainbow trout (Onchorhynchus mykiss), bullfrog (Rana catesbeiana), chicken (Gallus gallus), pig (Sus scrofa domesticus), and rat (Rattus norvegicus) using a [(125)I]TIP binding assay, gel filtration chromatography, and native polyacrylamide gel electrophoresis. [(125)I]TIP bound non-specifically to proteins in trout serum, specifically but weakly to proteins in bullfrog serum, and specifically and strongly to proteins in chicken, pig, and rat serum samples. Candidate TIP-binding proteins included lipoproteins (220-320kDa) in trout, albumin in bullfrog, albumin and transthyretin (TTR) in chicken and pig, and TTR in rat. TTR in the chicken, pig, and rat serum samples was responsible for the high-affinity, low-capacity binding sites for TIP (dissociation constant 2.2-3.5×10(-10)M). In contrast, a weak interaction of [(125)I]TIP with tadpole serum proteins accelerated [(125)I]TIP cellular uptake in vitro. Intraperitoneal injection of [(125)I]TIP in tadpoles revealed that the radioactivity was predominantly accumulated in the gallbladder and the kidney. The differences in the molecular and binding properties of TIP binding proteins among vertebrates would affect in part the cellular availability, tissue distribution and clearance of TIP.  相似文献   

16.
Aggregation of peptides and proteins into insoluble amyloid fibrils or related intracellular inclusions is the hallmark of many degenerative diseases, including Alzheimer's disease, Parkinson's disease, and various forms of amyloidosis. In spite of the considerable progress carried out in vitro in elucidating the molecular determinants of the conversion of purified and isolated proteins into amyloid fibrils, very little is known on factors governing this process in the complex environment of living organisms. Taking advantage of increasing evidence that bacterial inclusion bodies consist of amyloid-like aggregates, we have expressed in Escherichia coli both wild type and 21 single-point mutants of the N-terminal domain of the E. coli protein HypF. All variants were expressed as folding-incompetent units in a controlled manner, at low and comparable levels. Their solubilities were measured by quantifying the protein amount contained in the soluble and insoluble fractions by Western blot analysis. A significant negative correlation was found between the solubility of the variants in E. coli and their intrinsic propensity to form amyloid fibrils, predicted using an algorithm previously validated experimentally in vitro on a number of unfolded peptides and proteins, and considering hydrophobicity, β-sheet propensity, and charge as major sequence determinants of the aggregation process. These findings show that the physicochemical parameters previously recognized to govern amyloid formation by fully or partially unfolded proteins are largely applicable in vivo and pave the way for the molecular exploration of a process as complex as protein aggregation in living organisms.  相似文献   

17.
LEA (late embryogenesis abundant) proteins are intrinsically disordered proteins that contribute to stress tolerance in plants and invertebrates. Here we show that, when both plant and animal LEA proteins are co-expressed in mammalian cells with self-aggregating polyglutamine (polyQ) proteins, they reduce aggregation in a time-dependent fashion, showing more protection at early time points. A similar effect was also observed in vitro, where recombinant LEA proteins were able to slow the rate of polyQ aggregation, but not abolish it altogether. Thus, LEA proteins act as kinetic stabilisers of aggregating proteins, a novel function in protein homeostasis consistent with a proposed role as molecular shields.  相似文献   

18.
The heat shock protein Hsp104 has been reported to possess the ability to modulate protein aggregation and toxicity and to “catalyze” the disaggregation and recovery of protein aggregates, including amyloid fibrils, in yeast, Escherichia coli, mammalian cell cultures, and animal models of Huntington's disease and Parkinson's disease. To provide mechanistic insight into the molecular mechanisms by which Hsp104 modulates aggregation and fibrillogenesis, the effect of Hsp104 on the fibrillogenesis of amyloid beta (Aβ) was investigated by characterizing its ability to interfere with oligomerization and fibrillogenesis of different species along the amyloid-formation pathway of Aβ. To probe the disaggregation activity of Hsp104, its ability to dissociate preformed protofibrillar and fibrillar aggregates of Aβ was assessed in the presence and in the absence of ATP. Our results show that Hsp104 inhibits the fibrillization of monomeric and protofibrillar forms of Aβ in a concentration-dependent but ATP-independent manner. Inhibition of Aβ fibrillization by Hsp104 is observable up to Hsp104/Aβ stoichiometric ratios of 1:1000, suggesting a preferential interaction of Hsp104 with aggregation intermediates (e.g., oligomers, protofibrils, small fibrils) on the pathway of Aβ amyloid formation. This hypothesis is consistent with our observations that Hsp104 (i) interacts with Aβ protofibrils, (ii) inhibits conversion of protofibrils into amyloid fibrils, (iii) arrests fibril elongation and reassembly, and (iv) abolishes the capacity of protofibrils and sonicated fibrils to seed the fibrillization of monomeric Aβ. Together, these findings suggest that the strong inhibition of Aβ fibrillization by Hsp104 is mediated by its ability to act at different stages and target multiple intermediates on the pathway to amyloid formation.  相似文献   

19.
A number of peptide tags are available to facilitate the characterization of recombinant proteins. We have tested the bacterial oxaloacetate decarboxylase biotinylation domain for its efficacy in tagging recombinant proteins in vivo in Leishmania. To achieve efficient biotinylation, Leishmania also had to be co-transformed with the gene for bacterial biotin protein ligase (birA gene product). The recombinant chimeric protein could be detected on blots probed with avidin-horseradish peroxidase and purified on immobilized monomeric avidin resins.  相似文献   

20.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号