首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hormonal regulation of key gluconeogenic enzymes and glucose release by glucagon, dexamethasone, secretin and somatostatin was evaluated in maintenance cultured rat hepatocytes. (i) Phosphoenolpyruvate (PEP)-carboxykinase activity declined rapidly during the first 24 h in serum- and hormone-free culture with a further slight decay during the following 2 days. Dexamethasone and glucagon independently increased PEP-carboxykinase and acted synergistically when added in combination. Glucose-6-phosphatase activity declining linearly during hormone-free culture was stimulated by glucagon. Dexamethasone itself was without significant effects but completely abolished glucagon action. Fructose-1,6-diphosphatase was maintained at its initial level during the first day under control conditions and declined thereafter. Neither glucagon nor dexamethasone affected total activity or substrate (fructose-1,6-diphosphate) affinity of this enzyme. In short-term experiments on cells cultured under control conditions, protein synthesis-dependent stimulation of PEP-carboxykinase by glucagon and the permissive action of dexamethasone was demonstrated. Glucose-6-phosphatase and fructose-1,6-diphosphatase were not altered by hormones within this period. (ii) Stimulation by glucagon of gluconeogenesis was independent of its action on PEP-carboxykinase. Dexamethasone inhibited glycogenolysis but maintained glucose release at control levels probably by stimulation of gluconeogenesis. When added in combination, the glycogen-preserving action of dexamethasone acutely reduced the glucose release in response to glucagon. Glucagon sensitivity remained unchanged. (iii) The gastrointestinal hormones secretin and somatostatin were ineffective in modulating basal or glucagon-stimulated glucose release and gluconeogenic key enzymes. They are therefore unlikely to play a physiological role in hepatic glucose metabolism.  相似文献   

4.
Specific differentiated gene expression and the morphology of adult rat hepatocytes can be maintained for as long as 8 weeks in vitro only when they are cultured in the presence of biliary epithelial cells; when primary hepatocytes are cultured alone, they lose these functions within 2 to 3 days. We obtained evidence suggesting that contact between hepatocytes and biliary epithelial cells is necessary for maintaining hepatocyte functions. We examined whether junctional communication between and among hepatocytes and biliary epithelial cells is required for long-term maintenance of hepatocyte functions, using a dye-transfer method, in three co-cultures: (1) hepatocytes and biliary epithelial cells prepared from Sprague-Dawley rats; (2) hepatocytes from Sprague-Dawley rats and epithelial cells of the IAR 20 line, originally established from BDVI rats; and (3) hepatocytes from BDVI rats and IAR 20 epithelial cells. The established epithelial cell line (IAR 20) and early-passage cultures of biliary epithelial cells maintained hepatocyte-specific functions in culture for 40 and 70 days, respectively, but the latter induced more stable maintenance of albumin secretion. Hepatocytes cultured alone lost their characteristic morphology within 5 to 8 days, and almost no dye transfer was observed. In co-cultures, the capacity of biliary epithelial cells to communicate among themselves remained relatively high throughout the culture period, whereas hepatocytes showed almost no junctional communication at an early phase of culture and first began to communicate after 2 weeks, communication capacity increasing for at least the next 10 days of culture. The most notable finding was that there was no dye transfer between hepatocytes and biliary epithelial cells in any co-culture system. These results suggest that the maintenance of hepatocyte-specific functions requires intercellular contact but probably not gap-junctional communication between hepatocytes and biliary epithelial cells. This system is useful for studying heterotypic cell-cell interactions and the control of gene expression.  相似文献   

5.
Primary hepatocytes cultured as monolayers or as spheroids were studied to compare the effects of four different culture media (Williams' E, Chee's, Sigma Hepatocyte, and HepatoZYME medium). Rat hepatocytes were cultured as conventional monolayers for 3 d or as spheroids for 2 wk. For spheroid formation a method was emplOyed that combined the use of a nonadherent substratum with rotation of cultures. Hepatocyte integrity and morphology were assessed by light and electron microscopy and by reduced glutathione content. Hepatocyte function was measured by albumin secretion and 7-ethoxycoumarin metabolism. Chee's medium was found to be optimal for maintenance of hepatocyte viability and function in monolayers, but it failed to support spheroid formation. For spheroid formation and for the maintenance of spheroid morphology and function, Sigma HM was found to be optimal. These results demonstrate that the medium requirements of hepatocytes differ markedly depending on the culture model employed. Spheroid culture allowed better preservation of morphology and function of hepatocytes compared with conventional monolayer culture. Hepatocytes in spheroids formed bile canaliculi. and expressed an actin distribution resembling that found in hepatocytes in vivo. Albumin secretion was maintained at the same level as that found during the first d in primary culture, and 7-ethoxycoumarin metabolism was maintained over 2 wk in culture at approximately 30% of the levels found in freshly isolated hepatocytes. The improved morphology and function of hepatocyte cultures as spheroids may provide a more appropriate in vitro model for certain applications where the maintenance of liver-specific functions in long-term culture is crucial.  相似文献   

6.
For long-term maintenance of functional hepatocytes in primary culture, a new culture system with chemically modified type-I collagen gel was developed. Isolated hepatocytes spread as flat cells and rapidly lost their viability and functions when cultured on native collagen gel. In contrast, they survived for several weeks when cultured on collagen gels that had been modified by treatment with sodium-borohydride (NaBH4) or by digestion with pepsin, which resulted in destruction of crosslinking of collagen fibers and marked decrease in meachanical strength of the gels. These long-lived cells were round and aggregated and maintained high levels of various differentiated liver functions including albumin secretion and activities of tyrosine aminotransferase and P450. Moreover on collagen gels modified by treatment with NaBH4 or pepsin, the cell showed less DNA synthesis in response to mitogenic stimulation than cells cultures on gel containing native collagen. Interestingly, crosslinking of these chemically modified gels with D-ribose resulted in changes in various phenotypes of hepatocytes cultures on them including shape, longevity, and functions expressed when the cells were cultured on native collagen gel, suggesting that the effect of modification of the collagen gel is reversible. Thus the structure of collagen gels, probably due to the degree of crosslinking, seems to affect the morphology, maintenance of differentiated functions, and growth of primary cultured hepatocytes.  相似文献   

7.
本文研究了无血清培养高密度猪肝细胞的形态和功能变化。将分离的肝细胞以高密度(1×10~7/ml)培养在含激素、多种生长因子和营养成分的无血清培养基中,动态观察培养7天中肝细胞形态、活率、蛋白质合成功能、G-6-Pase活性、安定转化功能及LDH含量;同时以无血清培养低密度(5×10~5/ml)肝细胞作为对照组。研究结果表明:高密度培养的 肝细胞各项功能较低密度培养的肝细胞为低;高密度培养的肝细胞的形态、蛋白质合成功能在培养7天中保持稳定;活率随着培养时间的延长而下降,但均高于90%;安定转化功能在培养第2、3天最强;G-6-Pase活性在培养1天后明显下降,然后维持在较低水平;LDH含量在第1、2、3天较高。  相似文献   

8.
The conditions of primary culture for rat hepatocytes was investigated on the releasing effect of Plasminogen Activator (PA). The culture method using Collagen Coated Dish (CCD-method) which is currently available and the ordinary culture method using Plastic Culture Dish (PCD-method) were employed for that purpose in a comparative way. The effect of the addition of some supplements, that is FN, Aprotinin, EGF were also investigated. The following results were obtained. The dissociated rat hepatocytes formed a monolayer with pavementlike morphology at 24-48 hours after seeding. No difference was observed in the morphology of hepatocytes during the culture period between the two methods, although CCD-method allowed 120 hours culture, whereas PCD-method allowed 72 hours. The PA activity was demonstrated on the hepatocytes by either culture method according to the fibrinolysis autography. The cultured hepatocytes released PA into the medium continuously as long as the viability and morphology of the cells were maintained in good state. The PA activity reached the maximum after 96 hours culture in CCD-method, whereas it reached the maximum after 48 hours in PCD-method. The addition of Aprotinin to the culture medium was not necessary for PA release in CCD-method in contrast to PCD-method. When EGF was discontinued in the culture medium, the release of PA was reduced in association with the occurring of morphological disintegration of hepatocytes.  相似文献   

9.
The goal of the study was to examine the morphology and function of primary hepatocytes isolated from rats with toxic hepatitis induced by a combination of CCl4 and ethanol. Fluorescent immunocytochemical analysis demonstrated that normal and pathologic hepatocytes in culture formed actin cytoskeleton, cell-cell, and cell-matrix contacts. In this investigation, the morphology of mitochondria and their localization in hepatocytes was assayed with Rhodamine 123 staining. Glycogen and DNA contents in cultured hepatocytes were determined by fluorescent cytometry. It was found that the ploidy of hepatocytes isolated from normal and injured livers were different. Cells were maintained in culture for 5 days and no changes in ploidy distribution were observed. The glycogen content was 50% higher in the experimental group than the control one; it was decreased in control and cirrhotic hepatocytes treated with collagenase. Intact hepatocytes accumulated glycogen within 3 days; the glycogen level remained low in pathologic hepatocytes.  相似文献   

10.
Hepatocytes have restricted proliferative capacity in culture and when cultured without matrix, lose the hepatocyte-specific gene expression and characteristic cellular micro-architecture. Overlay of matrix-preparations on de-differentiated hepatocytes restores differentiation. Integrin-linked kinase (ILK) is a cell-matrix-adhesion protein crucial in fundamental processes such as differentiation and survival. In this study, we investigated the role of ILK, and its binding partners PINCH, alpha-parvin, and Mig-2 in matrix-induced hepatocyte differentiation. We report here that ILK is present in the liver and localizes at cell-matrix adhesions of cultured hepatocytes. We also show that ILK, PINCH, alpha-parvin, and Mig-2 expression level is dramatically reduced in the re-differentiated hepatocytes. Interestingly, hepatocytes lacking ILK undergo matrix-induced differentiation but their differentiation is incomplete, as judged by monitoring cell morphology and production of albumin. Our results show that ILK and cell-matrix adhesion proteins play an important role in the process of matrix-induced hepatocyte differentiation.  相似文献   

11.
G Michalopoulos  F Russell  C Biles 《In vitro》1979,15(10):796-806
Parenchymal hepatocytes isolated from adult rats were cultured on three types of collagen-containing substrata: collagen-coated plates, collagen membranes and confluent diploid human fibroblasts. Hepatocytes on the latter two substrata maintained characteristic morphology for at least 10 days in culture, whereas degenerative changes (cell death and formation of multinucleated hepatocytes) and growth of nonparenchymal elements were seen after 5 days in cultures on collagen-coated plates. Parallel findings were seen on basal and induced levels of cytochrome P-450 and NADPH-cytochrome C reductase. The basal levels of cytochrome P-450 were not measurable after day 3 in hepatocytes cultured on collagen-coated plates, whereas measurable levels were maintained in the hepatocytes cultured on the other two substrata. Addition of phenobarbital or methylcholanthrene at day 5 in culture caused an increase in cytochromes P-450 and P-448, respectively, only in hepatocytes cultured on collagen membranes and confluent fibroblasts. Analogous results were seen for the enzyme NADPH-cytochrome C reductase. The similarities in performance between hepatocytes on collagen membranes and on human fibroblasts show that a continuous collagen-containing substratum is important for optimal performance of hepatocytes in primary culture. The possible importance of cultures of hepatocytes on human fibroblasts for carcinogenesis studies is discussed.  相似文献   

12.
Summary Parenchymal hepatocytes isolated from adult rats were cultured on three types of collagen-containing substrata: collagen-coated plates, collagen membranes and confluent diploid human fibroblasts. Hepatocytes on the latter two substrata maintained characteristic morphology for at least 10 days in culture, whereas degenerative changes (cell death and formation of multinucleated hepatocytes) and growth of nonparenchymal elements were seen after 5 days in cultures on collagen-coated plates. Parallel findings were seen on basal and induced levels of cytochrome P-450 and NADPH-cytochrome C reductase. The basal levels of cytochrome P-450 were not measurable after day 3 in hepatocytes cultured on collagen-coated plates, whereas measurable levels were maintained in the hepatocytes cultured on the other two substrata. Addition of phenobarbital or methylcholanthrene at day 5 in culture caused an increase in cytochromes P-450 and P-448, respectively, only in hepatocytes cultured on collagen membranes and confluent fibroblasts. Analogous results were seen for the enzyme NADPH-cytochrome C reductase. The similarities in performance between hepatocytes on collagen membranes and on human fibroblasts show that a continuous collagen-containing substratum is important for optimal performance of hepatocytes in primary culture. The possible importance of cultures of hepatocytes on human fibroblasts for carcinogenesis studies is discussed.  相似文献   

13.
Dexamethasone can promote the differentiation of different tissues in vivo while dimethylsulfoxide is a commonly used inducer of differentiation in various tumor cell types in culture. In the present study, the effects of dexamethasone and dimethylsulfoxide on growth and functional activities of cultured differentiating suckling rat hepatocytes stimulated with various combinations of EGF, insulin, and glucagon were evaluated. Hepatocytes stimulated with EGF and either insulin or glucagon entered S phase and mitosis after a lag period of 24 h. These hormonal factors thus provide simple combinations of hepatocyte-growth regulators. Dexamethasone in the presence of EGF and glucagon inhibited the initiation of DNA synthesis and mitosis, but it had no effect on EGF-insulin stimulated cultures. Such a differential effect of dexamethasone was observed at concentrations ranging from 4 nM to 200 microM. alpha-Fetoprotein, albumin, and tyrosine aminotransferase were used as typical markers of hepatocyte differentiation status. Irrespective of the combinations of growth-promoting factors used, dexamethasone inhibited alpha 1-fetoprotein production and maintained albumin production and tyrosine aminotransferase inducibility. In contrast, dimethylsulfoxide at 2% inhibited hepatocyte growth and supported the maintenance of the production of both alpha 1-fetoprotein and albumin, independent of the hormonal growth regulators used. On this basis, dexamethasone and dimethylsulfoxide act as distinct modulators of growth and maturation of cultured differentiating suckling rat hepatocytes.  相似文献   

14.
J C Redshaw 《In vitro》1980,16(5):377-383
The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3':5'-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and high Km forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2).  相似文献   

15.
Summary To develop a strategy for extended primary culture of human hepatocytes, we placed human hepatocytes between two layers of collagen gel, called a “collagen gel sandwich.” Maintenance of hepatocellular functions in this system was compared with that of identical hepatocyte preparations cultured on dry-collagen coated dishes or co-cultured with rat liver epithelial cells. Human hepatocytes in a collagen gel sandwich (five separate cultures) survived for more than 4 wk, with the longest period of culture being 78 d. They maintained polygonal morphology with bile canaliculuslike structures and high levels of albumin secretion throughout the period of culture. In contrast, hepatocytes on dry-collagen became feature-less, and albumin secretion could not be detected after 14 d of culture. This loss of albumin secretion was partially recovered by overlaying one layer of collagen gel. Ethoxyresorufin O-deethylase activity, associated with cytochrome P450 1A2, was detected basally up to 29 d in collagen gel sandwich culture. These activities were induced four- to eightfold after induction with dibenz(a,h)anthracene. Cocultures also maintained basal activity up to 29 d. However, their inducibility was lower than that of hepatocytes in collagen gel sandwich. No ethoxyresorufin O-deethylase activity was detected in hepatocytes cultured on dry-collagen at 7 d. Thus, the collagen gel sandwich system preserves differentiated morphology and functions of human hepatocytes in primary culture for a prolonged period of time. This system is a promising model for studying human hepatocellular function, including protein synthesis and drug metabolism in vitro.  相似文献   

16.
Dexamethasone inhibited the basal and EGF-stimulated DNA synthesis of adult rat hepatocytes in primary culture. The inhibition was glucocorticoid-specific: It was shown by dexamethasone and hydrocortisone, but not by progesterone, testosterone, or estradiol; and was counteracted by the glucocorticoid antagonist RU-38486 in a concentration-dependent manner. Dexamethasone acted by decreasing the rate of entry into S-phase (kG1/S), while cell cycle parameters were unaffected. The steroid was able to decrease the kG1/S severalfold even when added more than 20 hr after EGF, half-maximal effect occurring 11 hr after the addition of dexamethasone. Densely populated areas were much more sensitive to the inhibition by dexamethasone than sparsely populated areas within the same culture dish: A moderate (10 nM) concentration of dexamethasone nearly abolished the DNA synthesis in densely populated areas of hepatocyte cultures with only marginal effect on sparsely populated cells.  相似文献   

17.
目的建立长爪沙鼠原代肝细胞分离培养体系。方法以雄性长爪沙鼠为供体,采用组织消化法和Seglen两步灌流法分离肝细胞,以台盼蓝染色检测细胞得率和活率,过碘酸-希夫氏反应(PAS)鉴定肝细胞,倒置显微镜观察肝细胞形态变化,并使用含有多种细胞因子的培养基维持培养。结果组织消化法和Seglen两步灌流法平均每只长爪沙鼠可分别获得肝细胞(1.33±0.34)×107个、(3.97±1.15)×107个,细胞活率分别为(29.4±6.05)%、(80.3±4.56)%,这两种方法在细胞得率及活率方面存在显著差异。肝细胞内因有大量的糖原颗粒,经PAS染色后被染成红色。结果表明肝细胞在贴壁后72 h内,肝细胞形态发生显著变化。结论采用胶原酶经肝门静脉灌流分离肝细胞是一种高效获得肝细胞的方法。各种细胞因子有利于维持肝细胞在体外的生长分化,长爪沙鼠原代肝细胞分离培养体系的建立将为肝脏相关疾病研究和防治药物的开发提供技术支持。  相似文献   

18.
Primary cultured rat hepatocytes in a membrane-supported collagen sandwich maintained their normal cell morphology and high level of albumin secretion for over 56 days. It was found that the existence of an upper layer of collagen gel is crucial for long-term culture and that the transference of cellular nutrients between the culture media and hepatocytes from both the upper and the lower sides of gel layers promotes albumin secretion. These facts suggest that the membrane-supported collagen sandwich mimics well thein vivo environment of hepatocytes. This method has great potential for the long-term culture of primary cells.  相似文献   

19.
NADPH-cytochrome-c (P-450) reductase, a flavoprotein, is a constituent of the hepatic microsomal polysubstrate monooxygenase and catalyzes the transfer of electrons from NADPH to cytochrome P-450. The hormonal regulation of NADPH-cytochrome-c reductase activity and protein has been examined in insolated hepatocytes cultured as monolayers for 48 h in Waymouth's MB752/1 medium fortified with insulin, dexamethasone and triiodothyronine. No similarity between the response of NADPH-cytochrome-c reductase and of tyrosine aminotransferase and malate dehydrogenase activity to dexamethasone and triiodothyronine treatment could be detected. In the absence of hormones about 65% of the original NADPH-cytochrome-c reductase activity and protein estimated by the immunochemical staining technique was retained. Culture of hepatocytes in insulin (10.0 mU/ml) or dexamethasone (100 nM) alone but not triiodothyronine improved the retention of reductase activity and protein. Only when hepatocytes were cultured in insulin, triiodothyronine and dexamethasone could NADPH-cytochrome-c reductase activity and protein be maintained at the original level. Dexamethasone alone was found to enhance consistently retention of reductase protein, but not reductase activity, to approximately the same level as in freshly isolated hepatocytes. The results suggest that microsomal NADPH-cytochrome-c reductase activity and protein can be maintained in isolated hepatocytes at the original level by culturing the cells in dexamethasone, insulin and triiodothyronine.  相似文献   

20.
Adrenergic regulation of glycogen phosphorylase and synthase was studied with adult rat hepatocytes either immediately after isolation (fresh hepatocytes) or after 24-h maintenance in culture (cultured hepatocytes). In fresh hepatocytes, an α-adrenergic agonist caused stronger activation of phosphorylase than a β agonist, and the effect of epinephrine to activate phosphorylase and to inactivate synthase was suppressed by an α antagonist more efficiently than by a β antagonist. In cultured hepatocytes, however, the relative activities of α- and β adrenergic agents were reversed; a β agonist was much more effective than an α-agonist in activating phosphorylase, and the action of epinephrine on phosphorylase, synthase, and cyclic AMP generation was almost totally blocked by a β antagonist but not by an α antagonist. Such a reciprocal change in hepatic α- and β-adrenergic responses occurred progressively during culture; the change was interfered with by cycloheximide, an inhibitor of protein synthesis, added to the culture medium. Thus, β-adrenergic functions became predominant over α functions when hepatocytes were maintained in primary culture. Physiological significance of this phenomenon is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号