首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidizes xylitol at the C-2 position to produce D-xylulose, and an induced D-xylulokinase from either the D-arabitol or D-xylose catabolic pathway. To investigate the potential of K. pneumoniae to evolve a different xylitol catabolic pathway, strains were constructed which were unable to synthesize ribitol dehydrogenase or either type of D-xylulokinase but constitutively synthesized the D-arabitol permease system. These strains had an inducible L-xylulokinase; therefore, the evolution of an enzyme which oxidized xylitol at the C-4 position to L-xylulose would establish a new xylitol catabolic pathway. Four independent xylitol-utilizing mutants were isolated, each of which had evolved a xylitol-4-dehydrogenase activity. The four dehydrogenases appeared to be identical because they comigrated during nondenaturing polyacrylamide gel electrophoresis. This novel xylitol dehydrogenase was constitutively synthesized, whereas L-xylulokinase remained inducible. Transductional analysis showed that the evolved dehydrogenase was not an altered ribitol or D-arabitol dehydrogenase and that the evolved dehydrogenase structural gene was not linked to the pentitol gene cluster. This evolved dehydrogenase had the highest activity with xylitol as a substrate, a Km for xylitol of 1.4 M, and a molecular weight of 43,000.  相似文献   

2.
【目的】获得葡萄糖酸氧化杆菌(Gluconobacter oxydans CGMCC 1.637)的木糖醇脱氢酶基因,研究其酶学性质及碳源特别是D-阿拉伯醇和木糖醇对该酶活性的影响。【方法】通过已报道序列的木糖醇脱氢酶的保守区设计引物,用聚合酶链式反应(polymerase chain reaction,PCR)扩增获得目的基因片段。根据获得的片段序列设计引物克隆目的基因的5’和3’片段,将所获得的片段拼接,获得完整的木糖醇脱氢酶基因。通过构建工程菌获得重组蛋白,并利用氧化还原反应测定重组酶的活性。用含不同碳源的培养基培养G.oxydans CGMCC 1.637,并测定其破胞上清液木糖醇脱氢酶氧化木糖醇的活性;用不同碳源培养的G.oxydans CGMCC 1.637转化木酮糖,用高效液相色谱法测定木糖醇的产量。【结果】获得一个新的798bp的木糖醇脱氢酶基因,所编码的木糖醇脱氢酶含265个氨基酸,属于短链脱氢酶家族。酶学性质研究发现,该木糖醇脱氢酶催化木糖醇氧化的最适合条件为35℃、pH 10.0,最高活性为23.27 U/mg,催化木酮糖还原为木糖醇的最适条件为30℃、pH 6.0。最高活性为255.55 U/mg;该木糖醇脱氢酶的对木糖醇的Km和Vmax分别为78.97 mmol/L和40.17 U/mg。碳源诱导实验表明,d-山梨醇对G.oxydans CGMCC 1.637木糖醇脱氢酶的活性有明显的促进作用,而葡萄糖、果糖、木糖、木糖醇、D-阿拉伯醇对木糖醇脱氢酶活性有明显的抑制作用。而在转化实验中,用d-甘露糖培养的G.oxydans CGMCC 1.637的转化能力明显高于其他碳源培养的G.oxydans CGMCC 1.637的转化能力,其中,用阿拉伯醇培养的G.oxydans CGMCC 1.637的转化能力最低,仅为对照的35%。【结论】克隆自G.oxydans CGMCC 1.637的木糖醇脱氢酶基因是一个新的基因,用阿拉伯醇培养的G.oxydans CGMCC 1.637破胞液木糖醇脱氢酶活性低;且阿拉伯醇对G.oxydans CGMCC 1.637木酮糖的还原能力具有抑制作用。  相似文献   

3.
The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of D-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtilis for system 1 and an alcohol dehydrogenase gene from G. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/L xylitol was obtained from around 30 g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the G. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD(+), was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.  相似文献   

4.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

5.
6.
Wild-type Aerobacter aerogenes 1033 is unable to utilize xylitol. A succession of mutants was isolated capable of growth on this compound (0.2%) at progressively faster rates. Whereas the ability to utilize xylitol was achieved in the first-stage mutant (X1) by constitutive production of ribitol dehydrogenase (for which xylitol is a substrate but not an inducer), the basis for enhanced utilization of xylitol in the second-stage mutant (X2) was an alteration of ribitol dehydrogenase. This enzyme was purified from the various mutants. The apparent K(m) for xylitol was 0.12 m with X2 enzyme and 0.29 m with X1 enzyme. The X2 enzyme was also less heat stable and, at 0.05 m substrate concentration, had a higher ratio of activity with xylitol compared to ribitol than did the X1 enzyme. The third mutant (X3), with an even faster growth rate on xylitol, produced a ribitol dehydrogenase indistinguishable physically or kinetically from that of X2. However, X3 produced constitutively an active transport system which accepts xylitol. The usual function of this system is apparently for the transport of d-arabitol since the latter is not only a substrate but also an inducer of the transport system in parental strains of X3. The sequence of mutations described herein illustrates how genes belonging to different metabolic systems can be mobilized to serve a new biochemical pathway.  相似文献   

7.
Summary WhenKlebsiella aerogenes was grown in continuous culture with xylitol, an unnatural pentitol, as the growth limiting substrate, the structural gene which codes for ribitol dehydrogenase, an enzyme which gratuitously catalyzes the oxidation of xylitol to D-xylulose, was duplicated. It appears that the duplication mechanism only duplicates the gene which is subjected to selective pressure and not any of the other closely linked genes. The degree to which the ribitol dehydrogenase gene is duplicated does not appear to be strictly correlated with the ability to grow faster on xylitol. Duplication mutants do, in fact, grow faster than their parent strain, but when challenged to grow at even higher growth rates there is a catabolic repression of enzyme activity. Thus a situation is created in which a structural gene is duplicated in response to selective pressure; these mutants can grow faster on the new substrate, but faster growth results in a silencing of a portion of the genes by catabolite repression.  相似文献   

8.
Microorganisms capable of producing xylitol from D-arabitol were screened for. Of the 420 strains tested, three bacteria, belonging to the genera Acetobacter and Gluconobacter, produced xylitol from D-arabitol when intact cells were used as the enzyme source. Among them, Gluconobacter oxydans ATCC 621 produced 29.2 g/l xylitol from 52.4 g/l D-arabitol after incubation for 27 h. The production of xylitol was increased by the addition of 5% (v/v) ethanol and 5 g/l D-glucose to the reaction mixture. Under these conditions, 51.4 g/l xylitol was obtained from 52.4 g/l D-arabitol, a yield of 98%, after incubation for 27 h. This conversion consisted of two successive reactions, conversion of D-arabitol to D-xylulose by a membrane-bound D-arabitol dehydrogenase, and conversion of D-xylulose to xylitol by a soluble NAD-dependent xylitol dehydrogenase. Use of disruptants of the membrane-bound alcohol dehydrogenase genes suggested that NADH was generated via NAD-dependent soluble alcohol dehydrogenase.  相似文献   

9.
Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.  相似文献   

10.
Characterization of xylitol-utilizing mutants of Erwinia uredovora.   总被引:3,自引:3,他引:0       下载免费PDF全文
Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol dehydrogenase had a Km for xylitol of 48 mM and showed best activity with xylitol and D-threitol as substrates. However, D-threitol was not a growth substrate for E. uredovora, and its presence did not induce either dehydrogenase or kinase activity. Attempts to determine the origin of the xylitol catabolic enzymes were unsuccessful; neither enzyme was induced on any growth substrate or in the presence of any polyol tested. Analysis of xylitol-negative mutants isolated after Tn5 mutagenesis suggested that the xylitol dehydrogenase and the L-xylulokinase structural genes were components of two separate operons but were under common regulatory control.  相似文献   

11.
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter – GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 °C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.  相似文献   

12.
13.
Xylose reductase (XR) is the first enzyme in D: -xylose metabolism, catalyzing the reduction of D: -xylose to xylitol. Formation of XR in the yeast Candida tropicalis is significantly repressed in cells grown on medium that contains glucose as carbon and energy source, because of the repressive effect of glucose. This is one reason why glucose is not a suitable co-substrate for cell growth in industrial xylitol production. XR from the ascomycete Neurospora crassa (NcXR) has high catalytic efficiency; however, NcXR is not expressed in C. tropicalis because of difference in codon usage between the two species. In this study, NcXR codons were changed to those preferred in C. tropicalis. This codon-optimized NcXR gene (termed NXRG) was placed under control of a constitutive glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter derived from C. tropicalis, and integrated into the genome of xylitol dehydrogenase gene (XYL2)-disrupted C. tropicalis. High expression level of NXRG was confirmed by determining XR activity in cells grown on glucose medium. The resulting recombinant strain, LNG2, showed high XR activity (2.86 U (mg of protein)(-1)), whereas parent strain BSXDH-3 showed no activity. In xylitol fermentation using glucose as a co-substrate with xylose, LNG2 showed xylitol production rate 1.44 g L(-1) h(-1) and xylitol yield of 96% at 44 h, which were 73 and 62%, respectively, higher than corresponding values for BSXDH-3 (rate 0.83 g L(-1) h(-1); yield 59%).  相似文献   

14.
15.
In preparation for the development of a xylitol biosensor, the xylitol dehydrogenase of Candida tropicalis IFO 0618 was partially purified and characterized. The optimal pH and temperature of the xylitol dehydrogenase were pH 8.0 and 50 degrees C, respectively. Of the various alcohols tested, xylitol was the most rapidly oxidized, with sorbitol and ribitol being reduced at 65% and 58% of the xylitol rate. The enzyme was completely inactive on arabitol, xylose, glucose, glycerol, and ethanol. The enzyme's xylitol oxidation favored the use of NAD+ (7.9 U/mg) over NADP+ (0.2 U/mg) as electron acceptor, while the reverse reaction, D-xylulose reduction, favored NADPH (7.7 U/mg) over NADH (0.2 U/mg) as electron donor. The K(m) values for xylitol and NAD+ were 49.8 mM and 38.2 microM, respectively. For the generation of the xylitol biosensor, the above xylitol dehydrogenase and a diaphorase were immobilized on bromocyan-activated sephallose. The gel was then attached on a dissolved oxygen electrode. In the presence of vitamin K3, NAD+ and phosphate buffer, the biosensor recorded a linear response to xylitol concentration up to 3 mM. The reaction was stable after 15 min. When the biosensor was applied to a flow injection system, optimal operation pH and temperature were 8.0 and 30 degrees C, respectively. The strengths and limitations of the xylitol biosensor are its high affinity for NAD+, slow reaction time, narrow linear range of detection, and moderate affinity for xylitol.  相似文献   

16.
Banerjee  S.  Archana  A.  Satyanarayana  T. 《Current microbiology》1994,29(6):349-352
The thermophilic mouldMalbranchea pulchella var.sulfurea TMD-8 produced extracellular xylanases in wheat straw hemicellulose as well as wheat straw. This mould utilized xylose less efficiently than glucose. Mycelial extracts contained xylose isomerase, xylose reductase, and xylitol dehydrogenase. Xylose isomerase was less thermostable than that from other microorganisms. However, xylitol dehydrogenase and xylose reductase were relatively more thermostable in comparison with these enzymes from other microorganisms. The affinity of xylose isomerase for xylose was very high (Km 10mM), while that of xylose reductase was low (Km 23.5mM). The xylitol dehydrogenase exhibited relatively high affinity for xylitol (Km 0.02mM). The activity of this enzyme, however, declined steeply, in the alkaline range. This is the first report on the occurrence of three intracellular enzymes, xylose isomerase, xylose reductase, and xylitol dehydrogenase in a thermophilic mould, which play an important role in xylose metabolism.  相似文献   

17.
Sugar alcohols have been widely applied in the field of food and medicine for their unique properties. Compared to chemical production, microbial production of sugar alcohol has become attractive for its environmental and sustainable pattern. In this study, a potential yeast isolated from soil of Beijing suburbs was identified as Pichia anomala TIB-x229, and its key enzyme of d-arabitol dehydrogenase for microbial production of sugar alcohols was functionally characterized. This yeast could simultaneously produce d-arabitol, xylitol, and/or ribitol from a different ratio of sugar substrates at a high efficiency by bioconversion, and no glucose repression happened when mixed sugars of xylose and glucose were used as the substrates during the bioconversion. This yeast could also efficiently convert complicated feedstock such as xylose mother liquor to d-arabitol, xylitol, and ribitol with 55 % yields. To elucidate the conversion relationship of the sugar alcohols, especially d-arabitol and xylitol, the key d-arabitol dehydrogenase gene from P. anomala was cloned, expressed and purified for further in vitro characterization. The results showed that this d-arabitol dehydrogenase could catalyze arabitol to xylulose further, which is significant for xylitol production from glucose. Our study laid the foundation for improving the production of sugar alcohols by metabolic and fermentation engineering strategies.  相似文献   

18.
Xylitol was used as a raw material for production of l-xylose and l-lyxose using Alcaligenes 701B strain and immobilized l-rhamnose isomerase enzyme. Alcaligenes 701B converted xylitol to l-xylulose with a yield of 34% in the bioreactor. l-Xylulose was converted to l-xylose and l-lyxose using immobilized l-rhamnose isomerase enzyme. The final equilibrium between l-xylulose, l-xylose and l-lyxose was 53:26:21. The enzyme assays indicated that Alcaligenes 701B strain has an NAD-dependent xylitol dehydrogenase enzyme responsible for l-xylulose production. Furthermore, NAD(P)H-dependent l-xylulose reductase enzyme was active during conversion of xylitol to l-xylulose. The highest l-xylulose production rate corresponded with the highest growth rate. The Alcaligenes 701B strain used d-xylose for biomass growth, but xylitol was used only for l-xylulose production during conversion phase.  相似文献   

19.
A gene coding for an NADP(+)-dependent d-xylose dehydrogenase was identified in the mould Hypocrea jecorina (Trichoderma reesei). It was cloned from cDNA, the active enzyme was expressed in yeast and a histidine-tagged enzyme was purified and characterized. The enzyme had highest activity with d-xylose and significantly smaller activities with other aldose sugars. The enzyme is specific for NADP(+). The K(m) values for d-xylose and NADP(+) are 43 mM and 250 microM, respectively. The role of this enzyme in H. jecorina is unclear because in this organism d-xylose is predominantly catabolized through a path with xylitol and d-xylulose as intermediates and the mould is unable to grow on d-xylonic acid.  相似文献   

20.
The yeast Candida tropicalis produces xylitol, a natural, low-calorie sweetener whose metabolism does not require insulin, by catalytic activity of NADPH-dependent xylose reductase. The oxidative pentose phosphate pathway (PPP) is a major basis for NADPH biosynthesis in C. tropicalis. In order to increase xylitol production rate, xylitol dehydrogenase gene (XYL2)disrupted C. tropicalis strain BSXDH-3 was engineered to co-express zwf and gnd genes which, respectively encodes glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), under the control of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. NADPH-dependent xylitol production was higher in the engineered strain, termed "PP", than in BSXDH-3. In fermentation experiments using glycerol as a co-substrate with xylose, strain PP showed volumetric xylitol productivity of 1.25 g l(-1) h(-1), 21% higher than the rate (1.04 g l(-1) h(-1)) in BSXDH-3. This is the first report of increased metabolic flux toward PPP in C. tropicalis for NADPH regeneration and enhanced xylitol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号