首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
袁锋  王敏 《昆虫分类学报》1994,16(2):115-119
本文描述采自陕西的环蛱蝶属1新种-周环蛱蝶Neptischouisp.nov.;将黄环蛱蝶伊洛亚种NeptisthemisilvsFuhstorfer提升为种,即伊洛环蛱蝶NeptisilvsFruhstorfer,认为黄环蛱蝶台湾亚种NeptisthemisnieriNomura应为伊洛环蛱蝶NeptisilvsFruhstorfer的1个亚种,描述了伊洛环蛱蝶的1新亚种-四川亚种Neptisi  相似文献   

2.
Three species of nymphalid butterflies, Vanessa cardui, V. indica and Nymphalis xanthomelas japonica , do not exhibit seasonal polyphenism in wing coloration. To determine whether seasonal non-polyphenic butterflies possess a cerebral factor affecting wing coloration, we used a Polygonia c-aureum female short-day pupal assay for detection of summer-morph-producing hormone (SMPH) activity in P. c-aureum. When 2% NaCl extracts of 25 brain-equivalents prepared from the pupal brains of V. cardui, V. indica or N. xanthomelas japonica were injected into Polygonia female short-day pupae, all recipients developed into summer-morph adults with dark-yellow wings, and the average grade score (AGS) of summer morphs showing SMPH activity was 3.8, 3.7 and 4.0, respectively. In contrast, when acetone or 80% ethanol extracts prepared from pupal brains were injected into Polygonia pupae, all recipients developed into autumn-morph adults with a dark-brown coloration and each exhibited an AGS of less than 0.5. Our results indicate that a cerebral factor showing SMPH activity is present in the pupal brain of seasonal non-polyphenic nymphalid butterflies, suggesting that a SMPH and cerebral factor showing SMPH activity occur widely among butterfly species. This finding will improve our understanding of the presence of cerebral factors showing interspecific actions of SHPH.  相似文献   

3.
Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).  相似文献   

4.
Hostplants and classification: a review of nymphalid butterflies   总被引:5,自引:0,他引:5  
In reviewing the hostplant associations of nymphalid butterflies, particular emphasis is placed on the intractable problem of nymphalid classification. Although offering few certain conclusions, if used in conjunction with more formal morphological characters, the data presented should contribute toward a resolution of the inter-relationships of the many widely recognized groupings within the Nymphalidae, several of which seem to be broadly characterized by typical host families. As a direct result of this analysis, the presumed association between larval hostplants and unpalatability is re-appraised.  相似文献   

5.
It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies.  相似文献   

6.
The associative learning capacity of male and female nymphalid butterflies, Agraulis vanillae, was investigated. Both males and females were conditioned to chemical stimuli of amyl acetate and butyl acetate, but not of host-plant volatile emissions, although our EAG recordings demonstrate that Agraulis can detect host-plant aroma as well as both acetates. More female than male Agraulis were conditioned. Female butterflies reared in the laboratory generally exhibited a higher percentage of conditional responses than those collected in nature. The number of conditional responses on the first day of experiments was significantly smaller than on the ensuing 2–7 days.  相似文献   

7.
The colour patterns of Heliconius butterflies are composed from a relatively simple set of pattern elements whose homologues are recognizable throughout the genus. Although Heliconius colour patterns look quite different from those of most nymphalids, these pattern elements are seen to derive from the generalized nymphalid groundplan. The differences arise primarily from the loss or positional shift of certain pattern elements, a high degree of fusion between individual pattern elements, and, in the forewing, asymmetries of the pattern elements relative to the wing-cell midline. The scheme of homologies we present is consistent with what is currently known about the comparative morphology and developmental physiology of colour pattern formation in Lepidoptera, and provides a framework for the interpretation of developmental, evolutionary and genetic studies in Heliconius.  相似文献   

8.
Concomitant with the rapid loss of tropical mature forests, the relative abundance of secondary forests is increasing steadily and the latter are therefore of growing interest for conservation. We analysed species richness of fruit-feeding nymphalid butterflies in secondary forest fragments of different age and isolation and in mature forest at the eastern margin of the Lore Lindu National Park in Central Sulawesi, Indonesia. From April to August 2001 we collected 2322 individuals of fruit-feeding butterflies, belonging to 33 species. Butterfly species richness increased with succession, but was significantly higher in mature forests than in all types of secondary forest. Isolation of the forest fragments did not have a significant effect on butterfly species richness in the range of distances (up to 1700 m) studied. Rather it appeared to affect only a few species. Species richness of endemic species was higher than of non-endemic species. Although endemic species were most diverse in mature forests, many species captured were restricted to secondary forests. Our results show that mature forest is essential for the conservation of nymphalid butterflies and for the endemic species in this area. However, considering the relatively large number of species found in these rather small habitat islands, secondary forest fragments, especially older successional stages, can be taken into account in conservation efforts and thus contribute to the preservation of tropical biodiversity on a landscape scale.  相似文献   

9.
Butterfly eyes consist of three types of ommatidia, which are more or less randomly arranged in a spatially regular lattice. The corneal nipple array and the tapetum, optical structures that many but not all butterflies share with moths, suggest that moths are ancestral to butterflies, in agreement with molecular phylogeny. A basic set of ultraviolet-, blue- and green-sensitive receptors, encountered among nymphalid butterflies, forms the basis for trichromatic vision. Screening pigments surrounding the light-receiving rhabdoms can modify the spectral sensitivity of the photoreceptors so that the sensitivity peak is in the violet, yellow, red, or even deep-red, specifically in swallowtails (Papilionidae) and whites (Pieridae), thus enhancing color discriminability. The photoreceptor sensitivity spectra are presumably tuned to the wing colors of conspecific butterflies.  相似文献   

10.
Although some nymphalid butterflies have been intensively used to study mechanisms of the colour pattern formation on butterfly wings, lycaenid butterflies are equally attractive, having easily identifiable distinct spot patterns and highly diverse colour patterns among species. To establish a lycaenid model system for physiological and genetic experiments, we here describe a series of methods for rearing the Japanese pale grass blue Zizeeria maha (Kollar) (Lepidoptera, Lycaenidae) in a small laboratory space with an artificial diet for generations. Adult individuals readily mated and oviposited in a small cage with sufficient light, flowers, and host plants. Eggs were harvested in the cage, and larvae were successfully reared to normal adults with an artificial diet made from fresh leaves (AD‐F), although they were smaller than those reared with a natural diet. Feeding an artificial diet made from dried leaves (AD‐D) frequently produced adult individuals with aberrant wing colour patterns. Using our rearing methods, it is now possible to rear this species in a laboratory and to establish specific strains for physiological and genetic experiments on the wing colour pattern development, diversity, and evolution.  相似文献   

11.
Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.  相似文献   

12.
Butterfly wing color-patterns are determined in the prospective wing tissues during the late larval and early pupal stages. To study the cellular differentiation process of wings, morphological knowledge on pupal wings is prerequisite. Here we systematically examined morphological patterns of the pupal wing cuticular surface in a wide variety of nymphalid butterflies in relation to adult color-patterns. Several kinds of pupal wing patterns corresponding to particular adult color-pattern elements were widely observed in many species. Especially noteworthy were the pupal "focal" spots corresponding to the adult border ocelli system, which were detected in many species of Nymphalinae, Apaturinae, Argynninae, Satyrinae, and Danainae. Striped patterns on the pupal wing cuticle seen in some species of Limenitinae, Ariadnae, and Marpesiinae directly corresponded to those of the adult wings. In Vanessa cardui, eyespot-like pattern elements were tentatively produced during development in the wing tissue underneath the pupal spots and subsequently erased, suggesting a mechanism for producing novel color-patterns in the course of development and evolution. The pupal focal spots reasonably correlated with the adult eyespots in size in Precis orithya and Ypthima argus. We physically damaged the pupal focal spots and their corresponding cells underneath in these species, which abolished or inhibited the formation of the adult eyespots. Taken together, our results clarified that pupal cuticle patterns were often indicative of the adult color-patterns and apparently reflect molecular activity of organizing centers for the adult color-pattern formation at least in nymphalid butterflies.  相似文献   

13.
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.  相似文献   

14.
We have checked the utility of DNA barcoding for species identification of nymphalid butterflies from Western Ghats of India by using 650 bp sequence of mitochondrial gene cytochrome c oxidase subunit I. Distinct DNA barcoding gap (i.e. difference between intraspecies and interspecies nucleotide divergence), exists between species studied here. When our sequences were compared with the sequences of the conspecifics submitted from different geographic regions, nine cases of deep intraspecies nucleotide divergences were observed. In spite of this, NJ (Neighbour Joining) clustering analysis successfully discriminated all species. Observed cases of deep intraspecies nucleotide divergences certainly warrant further study.  相似文献   

15.
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.  相似文献   

16.
We studied the vertical distribution of Lepidoptera from a canopy walkway within a dipterocarp rain forest at Kinabalu Park (Borneo) using three different methods: (1) Bait traps to survey fruit-feeding nymphalid butterflies, (2) standardized counts for predominantly flower-visiting butterflies and their potential predators, aerial-hawking birds, and (3) attraction by blacklight for hawk- and tiger moths. There was a distinct decrease in the abundance of fruit-feeding nymphalids towards the canopy, probably due to a reduced and less predictable availability of rotting fruits in higher strata. These constraints might also be responsible for a higher abundance variation in the canopy, and a significant shift in size from larger species in the understorey to smaller ones in the canopy. Changes of microclimate and the conspicuous increase of insectivorous aerial-hawking birds from ground to canopy layer may be responsible for the prominent change in species composition of fruit-feeding nymphalids between 20 and 30 m. Nectar-feeding Lepidoptera showed a reversed abundance pattern. One main factor contributing to the much higher abundance of flower-visiting butterflies and moth taxa in the canopy, such as Sphingidae and some Arctiinae, might be the increase of nectar resources available in upper vegetation layers. A distinctly higher diversity in hawkmoths was also found in the canopy. A higher abundance of insectivorous aerial-hawking birds in the canopy might contribute to the shift in body design of fruit-feeding nymphalids from more slender bodies at lower vegetation layers to stouter ones (i.e. species which are stronger on the wing) in the canopy. Larval resources could play an additional role in specialisation on but a small part of the vertical gradient. This may explain stratification pattern of the nymphalid subfamilies Morphinae and Satyrinae. Monocotyledoneous larval food plants of both taxa, whose flight activity is largely restricted to the understorey, occur mostly in lower vegetation layers. Our observations on a wide taxonomic and ecological range of butterflies and moths indicate that tropical forest canopies hold a distinct and unique Lepidoptera fauna, whose species richness and abundance patterns differ from lower strata. However, the notion of tropical forest canopies as peaks of terrestrial diversity does not hold uniformly for all taxa or guilds.  相似文献   

17.
Developmental processes exert their influence on the evolution of complex morphologies through the genetic correlations they engender between traits. Butterfly wing color patterns provide a model system to examine this connection between development and evolution. In butterflies, the nymphalid groundplan is a framework used to decompose complex wing patterns into their component pattern elements. The first goal of this work has been to determine whether the components of the nymphalid groundplan are the products of independent developmental processes. To test this hypothesis, the genetic correlation matrices for two species of butterflies, Precis coenia and Precis evarete, were estimated for 27 wing pattern characters. The second purpose was to test the hypothesis that the differentiation of serial homologs lowers their genetic correlations. The “eyespots” found serially repeated across the fore- and hindwing and on the dorsal and ventral wing surfaces provided an opportunity to test this hypothesis. The genetic correlation matrices of both species were very similar. The pattern of genetic correlation measured between the different types of pattern elements and between the homologous repeats of a pattern element supported the first hypothesis of developmental independence among the elements of the groundplan. The correlation pattern among the differentiated serial homologs was similarly found to support the second hypothesis: pairs of eyespots that had differentiated had lower genetic correlations than pairs that were similar in morphology. The implications of this study are twofold: First, the apparent developmental independence among the distinct elements of wing pattern has facilitated the vast diversification in morphology found in butterflies. Second, the lower genetic correlations betweendifferentiated homologs demonstrates that developmental constraints can in fact be broken. The extent to which genetic correlations readily change, however, remains unknown. © 1994 Wiley-Liss, Inc.  相似文献   

18.
1. Data on host plant associations of butterflies (Papilionoidea, excluding Hesperiidae) from two biogeographical regions were used to investigate (1) whether tropical herbivores are more narrowly specialized with regard to host plant choice than those of northern temperate zones, and (2) whether tropical butterflies show a greater diversity of host plant affiliations. 2. There was no evidence for a more restricted diet breadth of tropical butterflies, with diet breadth being measured as number of host plant families used per species. In the families Papilionidae, Pieridae, and Nymphalidae, host plant ranges of West Palaearctic and South-East Asian species are similar, whereas in one speciose group within the Lycaenidae, the Polyommatini, tropical species are significantly more polyphagous. 3. Diet breadth also differs among higher butterfly taxa. While Papilionidae, Pieridae, the nymphalid subfamilies Satyrinae, Morphinae, Libytheinae and Apaturinae, as well as the temperate-zone Polyommatini in the Lycaenidae are composed predominantly of host specialists, the degree of polyphagy is higher among the remaining nymphalid subfamilies and in many lycaenids. These results challenge strongly the view that tropical herbivores are generally more specialized in this regard than herbivores of higher latitudes. Rather, chemical constraints and phylogenetic conservatism shape host plant associations in many taxa in such a way that differences between temperate and tropical representatives are slight. 4. Host plant diversity, measured as the number of plant families used per butterfly family and by application of the log-series model, is much higher in South-East Asian Nymphalidae and Lycaenidae (the two largest families) than in their Western Palaearctic relatives. No such differences are observed in the Papilionidae and Pieridae (the two smaller families). Besides effects of sample size, the strong association of papilionid and pierid butterflies with plants characterized by a small set of classes of secondary plant compounds might generally restrict their capability to utilize a broader taxonomic range of host plants. 5. The results indicate that high floral diversity can be reflected by higher diversity of host plant affiliations of herbivores, but taxonomic idiosyncrasies render it difficult to draw generalized conclusions.  相似文献   

19.
20.
Directed aerial displacement requires that a volant organism'sairspeed exceeds ambient wind speed. For biologically relevantaltitudes, wind speed increases exponentially with increasedheight above the ground. Thus, dispersal of most insects isinfluenced by atmospheric conditions. However, insects thatfly close to the Earth's surface displace within the flightboundary layer where insect airspeeds are relatively high. Overthe past 17 years, we have studied boundary-layer insects byfollowing individuals as they migrate across the Caribbean Seaand the Panama Canal. Although most migrants evade either droughtor cold, nymphalid and pierid butterflies migrate across Panamanear the onset of the rainy season. Dragonflies of the genusPantala migrate in October concurrently with frontal weathersystems. Migrating the furthest and thereby being the most difficultto study, the diurnal moth Urania fulgens migrates between Centraland South America. Migratory butterflies and dragonflies arecapable of directed movement towards a preferred compass directionin variable winds, whereas the moths drift with winds over water.Butterflies orient using both global and local cues. Consistentwith optimal migration theory, butterflies and dragonflies adjusttheir flight speeds in ways that maximize migratory distancetraveled per unit fuel, whereas the moths do not. Moreover,only butterflies adjust their flight speed in relation to endogenousfat reserves. It is likely that these insects use optic flowto gauge their speed and drift, and thus must migrate wheresufficient detail in the Earth's surface is visible to them.The abilities of butterflies and dragonflies to adjust theirairspeed over water indicate sophisticated control and guidancesystems pertaining to migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号