首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host defense peptides of 35 species of Australian frogs from the hylids Cyclorana and Litoria, and the myobatrachids Crinia, Limnodynastes and Uperoleia have been identified. The biological activities of the majority of these peptides have been determined and include hormones, neuropeptides, opioids, immunomodulators, membrane active peptides [including antimicrobial, anticancer, antiviral (enveloped viruses like HIV and Herpes) and antifungal peptides], neuronal nitric oxide synthase inhibitors, pheromones and individual peptides with other specific activities. The host defense peptide skin profile can be diagnostic at both the species and higher taxonomic levels; for example, species of Crinia, Litoria and Uperoleia each produce quite different types of peptides. Species of Cyclorana and Limnodynastes are more difficult to characterize by skin peptides alone: species of both genera produce similar peptides with no apparent activity. The skin peptide profiles of frogs from the genera Crinia, Litoria and Uperoleia may be used together with morphological and cognate methods, to differentiate between sub-species and even different population clusters of the same species. Nucleotide sequencing of cDNAs of precursors (pre-pro peptides) of bioactive peptides from the skin glands of various species of the genus Litoria show that the majority of these peptides originated from a single ancestor gene before the break away of Australia from Gondwana. The exceptions are the caerulein neuropeptides {e.g. caerulein [pEQDY(SO3H)TGWMDF(NH2)]} which have a different origin to that of other Litoria peptides. Disulfide containing peptides from skin glands of species of Crinia show a different evolutionary route to peptides from species of Litoria.  相似文献   

2.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including renal dysfunction. LPS triggers the synthesis and release of cytokines and the vasodilatör nitric oxide (NO). A major contributor to the increase in NO production is LPS-stimulated expression of inducible nitric oxide synthase (iNOS). This occurs in vasculature and most organs including the kidney. During endotoxemia, NO and superoxide react spontaneously to form the potent and versatile oxidant peroxynitrite (ONOO) and the formation of 3-nitrotyrosine (nTyr)-protein adducts is a reliable biomarker of ONOO generation. Therefore, the present study was aimed at investigating the role of endogenous nitric oxide in regulating Na+,K+-ATPase activity in the kidney, and at investigating the possible contribution of reactive nitrogen species (RNS) by measuring of iNOS activity. In addition, the present study was aimed at investigating the relationship between nTyr formation with iNOS and Na+,K+-ATPase activities. Previously in our study, nTyr was not detectable in kidney of normal control animals but was detected markedly in LPS exposed animals. In this study, kidney Na+,K+-ATPase activity were maximally inhibited 6 h after LPS injection (P:0.000) and LPS treatment significantly increased iNOS activity of kidney (P:0.000). The regression analysis revealed a very close correlation between Na+,K+-ATPase activity and nTyr levels of LPS treated animals (r = –0.868, P = 0.001). Na+,K+-ATPase activity were also negatively correlated with iNOS activity (r = –0.877, P = 0.001) in inflamed kidney. These data suggest that NO and ONOO contribute to the development of oxidant injury. Furthermore, the source of NO may be iNOS. iNOS are expressed by the kidney, and their activity may increase following LPS administration. In addition, NO and ONOO formation inhibited Na+,K+-ATPase activity. This results also have strongly suggested that bacterial LPS disturbs activity of membrane Na+,K+-ATPase that may be an important component leading to the pathological consequences such as renal dysfunction in which the production of RNS are increased as in the case of LPS challenge. (Mol Cell Biochem 271: 107–112, 2005)  相似文献   

3.
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na+, K+, 2Cl cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 μM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K+]o-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1-/- mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.  相似文献   

4.
Host-defence peptides secreted from the skin glands of Australian frogs and toads, are, with a few notable exceptions, different from those produced by anurans elsewhere. This review summarizes the current knowledge of the following classes of peptide isolated and characterized from Australian anurans: neuropeptides (including smooth muscle active peptides, and peptides that inhibit the production of nitric oxide from neuronal nitric oxide synthase), antimicrobial and anticancer active peptides, antifungal peptides and antimalarial peptides. Other topics covered include sex pheromones of anurans, and the application of peptide profiling to (i). recognize particular populations of anurans of the same species and to differentiate between species, and (ii). investigate evolutionary aspects of peptide formation.  相似文献   

5.
The genic view of the process of speciation is based on the notion that species isolation may be achieved by a modest number of genes. Although great strides have been made to characterize 'speciation genes' in some groups of animals, little is known about the nature of genic barriers to gene flow in plants. We review recent progress in the characterization of genic species barriers in plants with a focus on five 'model' genera: Mimulus (monkey flowers); Iris (irises); Helianthus (sunflowers); Silene (campions); and Populus (poplars, aspens, cottonwoods). The study species in all five genera are diploid in terms of meiotic behaviour, and chromosomal rearrangements are assumed to play a minor role in species isolation, with the exception of Helianthus for which data on the relative roles of chromosomal and genic isolation factors are available. Our review identifies the following key topics as being of special interest for future research: the role of intraspecific variation in speciation; the detection of balancing versus directional selection in speciation genetic studies; the timing of fixation of alleles of major versus minor effects during plant speciation; the likelihood of adaptive trait introgression; and the identification and characterization of speciation genes and speciation gene networks.  相似文献   

6.
Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.  相似文献   

7.
The cardiac steroid ouabain, a known inhibitor of the sodium pump (Na+,K+-ATPase), has been shown to release endothelin from endothelial cells when used at concentrations below those that inhibit the pump. The present study addresses the question of which signaling pathways are activated by ouabain in endothelial cells. Our findings indicate that ouabain, applied at low concentrations to human umbilical cord endothelial cells (HUAECs), induces a reaction cascade that leads to translocation of endothelial nitric oxide synthase (eNOS) and to activation of phosphatidylinositol 3-kinase (PI3K). These events are followed by phosphorylation of Akt (also known as protein kinase B, or PKB) and activation of eNOS by phosphorylation. This signaling pathway, which results in increased nitric oxide (NO) production in HUAECs, is inhibited by the PI3K-specific inhibitor LY294002. Activation of the reaction cascade is not due to endothelin-1 (ET-1) binding to the ET-1 receptor B (ETB), since application of the ETB-specific antagonist BQ-788 did not have any effect on Akt or eNOS phosphorylation. The results shown here indicate that ouabain binding to the sodium pump results in the activation of the proliferation and survival pathways involving PI3K, Akt activation, stimulation of eNOS, and production of NO in HUAECs. Together with results from previous publications, the current investigation implies that the sodium pump is involved in vascular tone regulation.  相似文献   

8.
A total of 1,498 small mammals (rodents and insectivores), including Apodemus agrarius (n = 1,366), Crocidura lasiura (54), Mus musculus (32), Micronytus fortis (28), Eothenomys regulus (9), Micronys minutes (6), and Cricetulus triton (3), were live-trapped in Gyeonggi-do (Province) (Paju-si, Pocheon-gun, and Yeoncheon-gun) near the demilitarized zone (DMZ) from December 2004 to September 2005. A. agrarius was found to be infected with 3 species of echinostomes (Echinostoma hortense, Echinostoma cinetorchis, and Euparyphium murinum), while C. lasiura was infected with 1 species (Echinochasmus japonicas) of echinostome. Other mammals were free from echinostome infections. Total 16 E. hortense were detected in 7 (0.5%) mice, 9 E. cinetorchis from 5 (0.4%), and 3 E. murinum from 2 (0.1%) out of 1.366 A. agrarius examined. E. japonicus was found only in 1 (1.9%; total 3 specimens) C. lasiura. These results demonstrate that A. agrarius and C. lasiura, inhabiting near the DMZ of Gyeonggi-do serve as the natural definitive hosts for several species of echinostomes, although their infection rates are low. This is the first record of natural infections of A. agrarius with E. cinetorchis and C. lasiura with E. japonicus in the Republic of Korea.  相似文献   

9.
Mitochondria require nitric oxide (NO) to exert a delicate control of metabolic rate as well as to regulate life functions, cell cycle activation and arrest, and apoptosis. All activities depend on the matrical NO steady state concentration as provided by mitochondrial (mtNOS) and cytosolic sources (eNOS) and reduced by forming superoxide anion and H2O2 and a low peroxynirite (ONOO) yield. We review herein the biochemical pathways involved in the control of NO mitochondrial level and its biological and physiological significance in hormone effects and aging. At high NO, the cost of this physiological regulation is that ONOO excess will lead to nitrosation/nitration and oxidization of mitochondrial and cell proteins and lipids. The disruption of NO modulation of mitochondrial respiration supports then, a platform for prevalent neurodegenerative and metabolic diseases.  相似文献   

10.
11.
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.  相似文献   

12.
Giuffrè A  Forte E  Brunori M  Sarti P 《FEBS letters》2005,579(11):2528-2532
It is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO(2)). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556-13562] that (i) CcOX in turnover out-competes MbO(2) for NO, and (ii) NO bound to reduced CcOX is "metabolized" in the active site to nitrite by reacting with O(2). In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO(2) and CcOX in turnover, MbO(2) out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O(2) in the presence of MbO(2), NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation.  相似文献   

13.
The crayfish fauna of West Virginia consists of 23 species and several undescribed taxa. Most survey efforts documenting this fauna have been conducted in lotic waterways throughout the Appalachian plateau, Allegheny Mountains, and Ridge and Valley physiographic provinces. Bottomland forests, swamps, and marshes associated with large river floodplain such as the Ohio River floodplain historically have been under-surveyed in the state. These habitats harbor the richest primary burrowing crayfish fauna in West Virginia, and are worthy of survey efforts. In an effort to fill this void, the crayfish fauna of West Virginia's Ohio River floodplain was surveyed from 2004 through 2009. From this survey, nine species from four genera were documented inhabiting the floodplain. Zoogeography, biology, and conservation status is provided for all nine crayfishes. The dominant genus along the floodplain is Cambarus, which includes Cambarus (Cambarus) carinirostris, Cambarus (Cambarus) bartonii cavatus, Cambarus (Procambarus) robustus and Cambarus (Tubericambarus) thomai. Cambarus (Tubericambarus) thomai is the most prevalent burrowing species occurring along the floodplain. The genus Orconectes consists of two native species, Orconectes (Cambarus) obscurus and Orconectes (Cambarus) sanbornii; and two invasive taxa, Orconectes (Gremicambarus) virilis and Orconectes (Procambarus) rusticus. Orconectes (Cambarus) obscurus has experienced a range extension to the south and occupies streams formerly occupied by Orconectes (Cambarus) sanbornii. Both invasive taxa were allied with anthropogenic habitats and disturbance gradients. The genera Fallicambarus and Procambarus are represented by a single species. Both Fallicambarus (Cambarus) fodiens and Procambarus (Orconectes) acutus are limited to the historic preglacial Marietta River Valley.  相似文献   

14.
Nomega-Hydroxy-L-arginine, the intermediate in nitric oxide formation from L-arginine catalyzed by NO synthase, can be released into the extracellular space. It has been suggested that it can circulate and exert paracrine effects. Since it cannot only be used as substrate by NO synthases, but can also be oxidized by cytochrome P450 and other hemoproteins in a superoxide-dependent manner, it has been proposed that it can serve as NO donor. In the present study, the in vitro reduction of Nomega-hydroxy-L-arginine was examined. Pig and human liver microsomes as well as pig liver mitochondria were capable of reducing Nomega-hydroxy-L-arginine to L-arginine in an oxygen-insensitive enzymatic reaction. These results demonstrate that this metabolic pathway has to be considered when suggesting Nomega-hydroxy-L-arginine as NO-precursor. The reconstituted liver microsomal system of a pig liver CYP2D enzyme, the benzamidoxime reductase, was unable to replace microsomes to produce L-arginine from Nomega-hydroxy-L-arginine.  相似文献   

15.
16.
As part of an investigation on the coordination ability of peptides, the dipeptide glycylalanine (H-Gly-Ala-OH), tripeptide glycylalanylalanine (H-Gly-Ala-Ala-OH) and their Au(III)-complexes have been characterized structurally. The quantum chemical calculations and linear-dichroic infrared (IR-LD) spectroscopy predict structures of the compound studied, which are compared with a single crystal X-ray diffraction of H-Gly-Ala-OH. The coordination processes with Au(III) are supported by data for 1H NMR, ESI-MS, HPLC-MS-MS, TGV and DSC methods. The [Au(Gly-Ala)H−1Cl] and [Au(Gly-Ala-Ala)H−2] · 2H2O complexes are formed via -NH2, Namide/s and groups of the peptides. One Cl ion is attached to the metal center as terminal ligand in the first complex. In both cases a near to square-planar geometry of the chromophors AuN2OCl and AuN3O is yielded.  相似文献   

17.

Background

Microglial inflammation may significantly contribute to the pathology of Alzheimer’s disease. To examine the potential of Cudrania cochinchinensis to ameliorate amyloid β protein (Aβ)-induced microglia activation, BV-2 microglial cell line, and the ramified microglia in the primary glial mixed cultured were employed.

Results

Lipopolysaccharide (LPS), Interferon-γ (IFN-γ), fibrillary Aβ (fAβ), or oligomeric Aβ (oAβ) were used to activate microglia. LPS and IFN-γ, but not Aβs, activated BV-2 cells to produce nitric oxide through an increase in inducible nitric oxide synthase (iNOS) expression without significant effects on cell viability of microglia. fAβ, but not oAβ, enhanced the IFN-γ-stimulated nitric oxide production and iNOS expression.The ethanol/water extracts of Cudrania cochinchinensis (CC-EW) and the purified isolated components (i.e. CCA to CCF) effectively reduced the nitric oxide production and iNOS expression stimulated by IFN-γ combined with fAβ. On the other hand, oAβ effectively activated the ramified microglia in mixed glial culture by observing the morphological alteration of the microglia from ramified to amoeboid. CC-EW and CCB effectively prohibit the Aβ-mediated morphological change of microglia. Furthermore, CC-EW and CCB effectively decreased Aβ deposition and remained Aβ in the conditioned medium suggesting the effect of CC-EW and CCB on promoting Aβ clearance. Results are expressed as mean ± S.D. and were analyzed by ANOVA with post-hoc multiple comparisons with a Bonferroni test.

Conclusions

The components of Cudrania cochinchinensis including CC-EW and CCB are potential for novel therapeutic intervention for Alzheimer’s disease.  相似文献   

18.
Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.  相似文献   

19.

Background

Citrus represents a crop of global importance both in economic impact and significance to nutrition. Citrus production worldwide is threatened by the disease Huanglongbing (HLB), caused by the phloem-limited pathogen Candidatus Liberibacter spp.. As a source of stable HLB-resistance has yet to be identified, there is considerable interest in characterization of novel disease-associated citrus genes.

Results

A gene family of Small Cyclic Amphipathic Peptides (SCAmpPs) in citrus is described. The citrus genomes contain 100–150 SCAmpPs genes, approximately 50 of which are represented in the citrus EST database. These genes encode small ~50 residue precursor proteins that are post-translationally processed, releasing 5–10 residue cyclic peptides. The structures of the SCAmpPs genes are highly conserved, with the small coding domains interrupted by a single intron and relatively extended untranslated regions. Some family members are very highly transcribed in specific citrus tissues, as determined by representation in tissue-specific cDNA libraries. Comparison of the ESTs of related SCAmpPs revealed an unexpected evolutionary profile, consistent with targeted mutagenesis of the predicted cyclic peptide domain. The SCAmpPs genes are displayed in clusters on the citrus chromosomes, with apparent association with receptor leucine-rich repeat protein arrays. This study focused on three SCAmpPs family members with high constitutive expression in citrus phloem. Unexpectedly high sequence conservation was observed in the promoter region of two phloem-expressed SCAmpPs that encode very distinct predicted cyclic products. The processed cyclic product of one of these phloem SCAmpPs was characterized by LC-MS-MS analysis of phloem tissue, revealing properties consistent with a K+ ionophore.

Conclusions

The SCAmpPs amino acid composition, protein structure, expression patterns, evolutionary profile and chromosomal distribution are consistent with designation as ribosomally synthesized defense-related peptides.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1486-4) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death.

Scope of review

The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death.

Major conclusions

S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects.

General Significance

Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号