共查询到20条相似文献,搜索用时 0 毫秒
1.
R. Ravichandran 《NanoBioTechnology》2009,5(1-4):17-33
In recent years, there has been a considerable interest in the development of novel drug delivery systems using nanotechnology. Nanoparticles represent a promising drug delivery system of controlled and targeted release. In this context, nanosuspensions will be effective in increasing the solubility and bioavailability of poorly soluble drugs. This review focuses on advantages, method of preparation, physical characteristics, and evaluation of drug nanosuspensions. 相似文献
2.
Microparticulate drug delivery systems have shown a great interest in the pharmaceutical area. They allow the increase of drug therapeutic efficacy and the reduction of side effects. In this context, microsponges represent a new model of porous polymer microspheres, which allow the entrapment of a wide range of active agents. During the development, it is necessary the characterization of the system and among of the most important tests are the release and permeation profile analysis. They can demonstrate the behavior of drug in a specific site with a particular application condition and are related to therapeutic efficacy. Therefore, this review provides an overview of drug delivery profile from microsponges. Methods for determination of in vitro release and ex vivo permeation studies are detailed. Examples of drug delivery from microsponges administered in different sites are also discussed with aim to provide an understanding of the use of this strategy to modify the drug delivery. 相似文献
3.
Neurochemical Research - Parkinson’s disease (PD) is a common central nervous system disorder (CNS) characterized by cell loss in the substantia nigra. Severe loss of dopaminergic neurons and... 相似文献
4.
This work sets out to study the effect of hydrophobic molecules on the morphology of aqueous solutions of amphiphilic block copolymer, which has potential drug delivery applications. The effect is studied both experimentally and by using simulations. Using cryogenic TEM observations, micelles can clearly be visualised and their core size measured. While pure polymer solutions form into spherical micelles with a narrow size distribution, addition of small amounts of hydrophobic drug molecules leads to distortions in shape, a wider size distribution, and larger average core diameter. Simulations are based on a mesoscale dynamic density functional method with Gaussian chain Hamiltonian and mean-field interactions, as implemented in the MesoDyn code. With parameters for the amphiphilic system established in earlier work, and mean-field interactions for the drug molecule derived from structure–property relationships, we obtain good agreement with the TEM observations for the effect of the hydrophobic molecules on the morphology. The simulations clearly show how increasing drug concentration leads to an increase in micelle size, a wider distribution and more elongated rather than spherical micelles. 相似文献
5.
Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases. 相似文献
6.
7.
Viness Pillay Ahmed Seedat Yahya E. Choonara Lisa C. du Toit Pradeep Kumar Valence M. K. Ndesendo 《AAPS PharmSciTech》2013,14(2):692-711
Polymers are extensively used in the pharmaceutical and medical field because of their unique and phenomenal properties that they display. They are capable of demonstrating drug delivery properties that are smart and novel, such properties that are not achievable by employing the conventional excipients. Appropriately, polymeric refabrication remains at the forefront of process technology development in an endeavor to produce more useful pharmaceutical and medical products because of the multitudes of smart properties that can be attained through the alteration of polymers. Small alterations to a polymer by either addition, subtraction, self-reaction, or cross reaction with other entities have the capability of generating polymers with properties that are at the level to enable the creation of novel pharmaceutical and medical products. Properties such as stimuli-responsiveness, site targeting, and chronotherapeutics are no longer figures of imaginations but have become a reality through utilizing processes of polymer refabrication. This article has sought to review the different techniques that have been employed in polymeric refabrication to produce superior products in the pharmaceutical and medical disciplines. Techniques such as grafting, blending, interpenetrating polymers networks, and synthesis of polymer complexes will be viewed from a pharmaceutical and medical perspective along with their synthetic process required to attain these products. In addition to this, each process will be evaluated according to its salient features, impeding features, and the role they play in improving current medical devices and procedures. 相似文献
8.
Shchegravina E. S. Sachkova A. A. Usova S. D. Nyuchev A. V. Gracheva Yu. A. Fedorov A. Yu. 《Russian Journal of Bioorganic Chemistry》2021,47(1):71-98
Russian Journal of Bioorganic Chemistry - In the end of the twentieth century, the world entered the era of high-tech and personalized medicine, characterized by the introduction of targeted drugs... 相似文献
9.
Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn’s disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.KEY WORDS: colon targeting, factors affecting colon delivery, future trends, novel approaches, traditional approaches 相似文献
10.
Francisca Mano Marta Martins Isabel Sá-Nogueira Susana Barreiros João Paulo Borges Rui L. Reis Ana Rita C. Duarte Alexandre Paiva 《AAPS PharmSciTech》2017,18(7):2579-2585
Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems. 相似文献
11.
12.
《Journal of liposome research》2013,23(4):455-466
AbstractThe folate receptor has been identified as a marker for ovarian carcinomas and is also up-regulated in many other types of cancer. Folate-conjugation has been successfully applied in the tumor cell-selective targeting of liposomes. A long polyethyleneglycol (PEG) spacer between the targeting ligand (i.e. folic acid) and the liposome surface is required for receptor recognition. Ligand binding is compatible with the PEG-coating of the liposomes needed for prolonged systemic circulation. Folate-targeted liposomes have been shown to enhance the in vitro cytotoxicity of liposome-entrapped doxorubicin and antisense oligodeoxynucleotides to receptor-bearing tumor cells. Folate, as a targeting ligand, offers unique advantages over immunoliposomes, i.e., easy liposomal incorporation, low cost, high receptor affinity and tumor specificity, extended stability, and potential lack of immunogenicity. 相似文献
13.
The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film. 相似文献
14.
The purpose of this study was to formulate drug-loaded polyelectrolyte matrices constituting blends of pectin, chitosan (CHT)
and hydrolyzed polyacrylamide (HPAAm) for controlling the premature solvation of the polymers and modulating drug release.
The model drug employed was the highly water-soluble antihistamine, diphenhydramine HCl (DPH). Polyelectrolyte complex formation
was validated by infrared spectroscopy. Matrices were characterized by textural profiling, porositometry and SEM. Drug release
studies were performed under simulated gastrointestinal conditions using USP apparatus 3. FTIR spectra revealed distinctive
peaks indicating the presence of –COO− symmetrical stretching (1,425–1,390 cm−1) and -NH3+ deformation (1,535 cm−1) with evidence of electrostatic interaction between the cationic CHT and anionic HPAAm corroborated by molecular mechanics
simulations of the complexes. Pectin–HPAAm matrices showed electrostatic attraction due to residual –NH2 and –COO− groups of HPAAm and pectin, respectively. Textural profiling demonstrated that CHT-HPAAm matrices were most resilient at
6.1% and pectin–CHT–HPAAm matrices were the least (3.9%). Matrix hardness and deformation energy followed similar behavior.
Pectin–CHT–HPAAm and CHT–HPAAm matrices produced type IV isotherms with H3 hysteresis and mesopores (22.46 nm) while pectin–HPAAm
matrices were atypical with hysteresis at a low P/P0 and pore sizes of 5.15 nm and a large surface area. At t
2 h, no DPH was released from CHT–HPAAm matrices, whereas 28.2% and 82.2% was released from pectin–HPAAm and pectin–CHT–HPAAm
matrices, respectively. At t
4 h, complete DPH release was achieved from pectin–CHT–HPAAm matrices in contrast to only 35% from CHT–HPAAm matrices. This revealed
the release-modulating capability of each matrix signifying their applicability in controlled oral drug delivery applications. 相似文献
15.
16.
Mehrdad Hamidi Abdolhossein Zarrin Mahshid Foroozesh 《Critical reviews in biotechnology》2013,33(3):111-127
ABSTRACTInterferons, IFNs, are among the most widely studied and clinically used biopharmaceuticals. Despite their invaluable therapeutic roles, the widespread use of IFNs suffers from some inherent limitations, mainly their relatively short circulation lifespan and their unwanted effects on some non-target tissues. Therefore, both these constraints have become the central focus points for the research efforts on the development of a variety of novel delivery systems for these therapeutic agents with the ultimate goal of improving their therapeutic end-points. Generally, the delivery systems currently under investigation for IFNs can be classified as particulate delivery systems, including micro- and nano-particles, liposomes, minipellets, cellular carriers, and non-particulate delivery systems, including PEGylated IFNs, other chemically conjugated IFNs, immunoconjugated IFNs, and genetically conjugated IFNs. All these strategies and techniques have their own possibilities and limitations, which should be taken into account when considering their clinical application. In this article, currently studied delivery systems/techniques for IFN delivery have been reviewed extensively, with the main focus on the pharmacokinetic consequences of each procedure. 相似文献
17.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems. 相似文献
18.
Fernandez-Tarrio M Yañez F Immesoete K Alvarez-Lorenzo C Concheiro A 《AAPS PharmSciTech》2008,9(2):471-479
The potential of poly(ethylene oxide)-poly(propylene oxide) block copolymers Pluronic F127 (PF127) and Tetronic 304 (T304), 904 (T904) and 1307 (T1307) as components of solid self-(micro)emulsifying dosage forms, S(M)EDDS, was evaluated. The dependence of the self-associative properties of Tetronics on pH explained the low ability of the micelles to solubilize griseofulvin at acid pH (sevenfold increase) compared to at alkaline pH (12-fold). Blends of polyglycolyzed glycerides (Labrasol, Labrafac CC, and Labrafil M 1944CS) with each copolymer at two different weight ratios (80:20 and 60:40) were prepared, diluted in water, and characterized in terms of globule size, appearance and griseofulvin solubility. The blends with Labrasol led to microemulsions that are able to increase drug solubility up to 30-fold. SMEDD hard gelatine capsules filled with griseofulvin and Labrasol or Labrasol/copolymer 80:20 showed a remarkable increase in drug solubility and dissolution rate, particularly when T904, T1307 or PF127 was present in the blend. This effect was more remarkable when the volume of the dissolution medium was 200 ml (compared to 900 ml), which can be related to a higher stability of the microemulsion when there is a greater concentration of the copolymer and glyceride in the medium. 相似文献
19.
The ability of self-emulsifying drug delivery systems (SEDDS) to improve solubility, dissolution rate and bioavailability
of a poorly water-soluble calcium channel blocker, nimodipine (NM) was evaluated in the present investigation. Solubility
of NM in various oils, surfactants and cosurfactants was determined. The influence of the ratio of oil to surfactant + cosurfactant,
pH of aqueous phase on mean globule size of resulting emulsions was studied by means of photon correlation spectroscopy. The
NM loaded SEDDS selected for the in vitro and in vivo studies exhibited globule size less than 180 nm. In vitro dissolution studies indicated that NM loaded SEDDS could release complete amount of NM irrespective of the pH of the dissolution
media. Pharmacokinetics of NM suspension, NM oily solution, NM micellar solution and NM SEDDS were evaluated and compared
in rabbits. Relative bioavailability of NM in SEDDS was significantly higher than all the other formulations. NM loaded SEDDS
were subjected to various conditions of storage as per ICH guidelines for 3 months. NM SEDDS successfully withstood the stability
testing. 相似文献
20.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways. 相似文献