首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In alkaline solutions, nitroalkanes (RCH2NO2) undergo deprotonation and rearrange to an aci anion (RHC=NO2-), which may function as a spin trap. Using electron paramagnetic resonance (EPR) spectroscopy, we have investigated suitability of aci anions of a series of nitroalkanes (CH3NO2, CH3CH2NO2, CH3(CH2)2NO2, and CH3(CH2)3NO2) to spin trap nitric oxide (*NO). Based on the observed EPR spectra, the general structure of the adducts, formed by addition of *NO to RHC=NO2-, was identified as nitronitroso dianion radicals of general formula [RC(NO)NO2]*2- in strong base (0.5 M NaOH), and as a mono-anion radical [RCH(NO)NO2]*- in alkaline buffers, pH 10-13. The hyperfine splitting on 14N in the -NO2 moiety (11.2-12.48 G) is distinctly different from the splitting on 14N in the -NO moiety of the adducts (5.23-6.5 G). The structure of the adducts was verified using 15N-labeled *NO, which produced radicals, in which triplet due to splitting on 14N (I = 1) in 14NO/aci nitro adducts was replaced by a doublet due to 15N (I = 1/2) in 15NO/aci nitro adducts. EPR spectra of aci nitromethane/NO adduct recorded in NaOH and NaOD (0.5 M) showed that the hydrogen at alpha-carbon can be exchanged for deuterium, consistent with structures of the adducts being [CH(NO)NO2]*2- and [CD(NO)NO2]*2-, respectively. These results indicate that nitroalkanes could potentially be used as prototypes for development of *NO-specific spin traps suitable for EPR analysis.  相似文献   

2.
The free radical, nitric oxide ( radicalNO), is responsible for a myriad of physiological functions. The ability to verify and study radicalNO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of radicalNO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of radicalNO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of radicalNO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of radicalNO in vivo. In this paper, we present data comparing several proline derived iron-dithiocarbamate complexes with the more commonly used spin traps for radicalNO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of radicalNO with these Fe2+(L)2complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   

3.
Currently available EPR spin-trapping techniques are not sensitive enough for quantification of basal vascular nitric oxide (NO) production from isolated vessels. Here we demonstrate that this goal can be achieved by the use of colloid Fe(DETC)(2). Rabbit aortic or venous strips incubated with 250 microM colloid Fe(DETC)(2) exhibited a linear increase in tissue-associated NO-Fe(DETC)(2) EPR signal during 1 h. Removal of endothelium or addition of 3 mM N(G)-nitro-l-arginine methyl ester (L-NAME) inhibited the signal. The basal NO production was estimated as 5.9 +/- 0.5 and 8.3 +/- 2.1 pmol/min/cm(2) in thoracic aorta and vena cava, respectively. Adding sodium nitrite (10 microM) or xanthine/xanthine oxidase in the incubation medium did not modify the intensity of the basal NO-Fe(DETC)(2) EPR signal. Reducing agents were not required with this method and superoxide dismutase activity was unchanged by the Fe(DETC)(2) complex. We conclude that colloid Fe(DETC)(2) may be a useful tool for direct detection of low amounts of NO in vascular tissue.  相似文献   

4.
Spin trapping/electron paramagnetic resonance (EPR) spectroscopy allows specific detection of nitric oxide (NO) generation, in vivo. However, in order to detect an EPR signal in living organism, usually a stimulation of immune system with LPS is used to achieve higher than physiological NO levels. Here, we report non-invasive spin trapping of NO in tumors of non-treated, living animals. EPR spectroscopy was performed at S-band to detect NO in Cloudman S91 melanoma tumors growing in the tail of living, syngeneic hosts-DBA/2 mice. Iron (II) N-(dithiocarboxy)sarcosine Fe2+(DTCS)(2) was used as the spin trap. The results were confirmed by X-band ex vivo study. A characteristic three-line spectrum of NO-Fe(DTCS)(2) (A(N)=13 G) was observed (n=4, out of total n=6) in non-treated tumors and in tumors of animals treated with l-arginine. Substrate availability did not limit the detection of NO by spin trapping. Half-life time of the NO-Fe(DTCS)(2) in tumor tissue was about 60 min. The feasibility of non-invasive spin trapping/EPR spectroscopic detection of NO generated in tumor tissue in living animals, without additional activation of the immune system, was demonstrated for the first time.  相似文献   

5.
Free nitric oxide (NO) activates soluble guanylate cyclase (sGC), an enzyme, within both pulmonary and vascular smooth muscle. sGC catalyzes the cyclization of guanosine 5'-triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP). Binding rates of NO to the ferrous heme(s) of sGC have been measured in vitro. However, a missing link in our understanding of the control mechanism of sGC by NO is a comprehensive in vivo kinetic analysis. Available literature data suggests that NO dissociation from the heme center of sGC is accelerated by its interaction with one or more cofactors in vivo. We present a working model for sGC activation and NO consumption in vivo. Our model predicts that NO influences the cGMP formation rate over a concentration range of approximately 5-100 nM (apparent Michaelis constant approximately 23 nM), with Hill coefficients between 1.1 and 1.5. The apparent reaction order for NO consumption by sGC is dependent on NO concentration, and varies between 0 and 1.5. Finally, the activation of sGC (half-life approximately 1-2 s) is much more rapid than deactivation (approximately 50 s). We conclude that control of sGC in vivo is most likely ultra-sensitive, and that activation in vivo occurs at lower NO concentrations than previously reported.  相似文献   

6.
7.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

8.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125–400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

9.
Phenyl N-tert-butylnitrone (PBN) is a spin trapping agent previously shown to exert a neuroprotective effect in infant rat brain during bacterial meningitis. In the present study, we investigated the effect of systemic PBN administration on nitric oxide (NO) production in a rat model of experimental meningitis induced by lipopolysaccharide (LPS). We assessed the NO concentration in rat brain tissues with an electron paramagnetic resonance (EPR) NO trapping technique. In this model, rats receiving intracisternal LPS administration showed symptoms of meningitis and cerebrospinal fluid (CSF) pleocytosis. The time course study indicated that the concentration of NO in the brain reached the maximum level 8.5h after injection of LPS, and returned to the control level 24 h after the injection. When various doses of PBN (125-400 mg/kg) were injected intraperitoneally 30 min prior to LPS, NO production in the brain was reduced with increasing PBN dose (250 mg/kg suppressed 80% at 8.5h after LPS injection), and white blood cells (WBC) in CSF were significantly decreased. We concluded that reduction of NO generation during bacterial meningitis contributes to the neuroprotective effect of PBN in addition to its possible direct scavenging of reactive oxygen intermediate (ROI).  相似文献   

10.
Nitric oxide (NO*) and its reaction products are key players in the physiology and pathophysiology of inflammatory settings such as sepsis and shock. The consequences of the expression of inducible NO* synthase (iNOS, NOS-2) can be either protective or damaging to the liver. We have delineated two distinct hepatoprotective actions of NO*: the stimulation of cyclic guanosine monophosphate and the inhibition of caspases by S-nitrosation. In contrast, iNOS/NO* promotes hepatocyte death under conditions of severe redox stress, such as hemorrhagic shock or ischemia/reperfusion. Redox stress activates an unknown molecular switch that transforms NO*, which is hepatoprotective under resting conditions, into an agent that induces hepatocyte death. We hypothesize that the magnitude of the redox stress is a major determinant for the effects of NO* on cell survival by controlling the chemical fate of NO*. To address this hypothesis, we have carried out studies in relevant in vivo and in vitro settings. Moreover, we have constructed an initial mathematical model of caspase activation and coupled it to a model describing some of the reactions of NO* in hepatocytes. Our studies suggest that modulation of iron, oxygen, and superoxide may dictate whether NO* is hepatoprotective or hepatotoxic.  相似文献   

11.
Despite the importance of protein radicals in cell homeostasis and cell injury, their formation, localization, and propagation reactions remain obscure, mainly because of the difficulties in detecting and characterizing radicals, in general, and protein radicals, in particular. New approaches based on spin trapping coupled with other methodologies are under development/testing but so far they have been applied mainly to the study of protein-tyrosyl and protein-tryptophanyl radicals. Here, our aim is to emphasize the importance of developing new methodologies for the detection of glutathyil and protein-cysteinyl radicals under physiological conditions. To this end, we summarize current EPR evidence supporting the view that glutathione and protein-cysteines are among the preferential targets of nitric oxide-derived oxidants and that they are oxidized to the glutathiyl and protein-cysteinyl radicals, respectively. The possible intermediacy of these species in the biological formation of mediators of protein-cysteine redox signaling, such as S-nitrosothiols and sulfenic acids, is also discussed.  相似文献   

12.
A modified method based on EPR spin trapping and triacetylglycerol extraction was used for tissue nitric oxide (NO) detection at room temperature. NO signal intensity was stable for about 1.5 h and the detection limit of this method was less than 200 pmol g–1 tissue. Using this method, we report evidence that NO production in vivo can be inhibited by adriamycin in mice livers.  相似文献   

13.
The nitric oxide synthases (NOSs) consist of a flavin-containing reductase domain, linked to a heme-containing oxygenase domain, by a calmodulin (CaM) binding sequence. The flavin-containing reductase domains of the NOS isoforms possess close sequence homology to NADPH-cytochrome P450 reductase (CPR). Additionally, the oxygenase domains catalyze monooxygenation of L-arginine through a cytochrome P450-like cysteine thiolate-liganded heme bound in the active site. With these considerations in mind, we conducted studies in an attempt to gain insight into the intermediates involved in flavoprotein-to-heme electron transfer in the NOSs. Static, steady-state, and stopped-flow kinetic studies indicated that nNOS must be reduced to a more than one-electron-reduced intermediate before efficient electron transfer can occur. Therefore, the possibility exists that the oxygenase domains of the NOS isoforms may receive their electrons from the reductase domains by a mechanism resembling the CPR-P450 interaction. Furthermore, the rate-limiting step in electron transfer appears to be the transfer of electrons from the flavoprotein to the oxygenase domain facilitated by the binding of CaM at increased intracellular Ca(2+) concentrations. Thus, modulation of electron transfer rates appears to be regulated at the level of the flavoprotein domains of the NOS isoforms.  相似文献   

14.
We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N'-bis(carboxymethyl)-N,N'-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s(-1). Implications for catalase function are discussed.  相似文献   

15.
16.
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo.  相似文献   

17.
The mechanism of NO trapping by iron-diethylthiocarbamate complexes was investigated in cultured cells and animal and plant tissues. Contrary to common belief, the NO radicals are trapped by iron-diethylthiocarbamates not only in ferrous but in ferric state also in the biosystems. When DETC was excess over endogenous iron ligands like citrate, ferric DETC complexes were directly observed with EPR spectroscopy at g=4.3. This was the case when isolated spinach leaves, endothelial cultured cells were incubated in the medium with 2.5mM DETC or mouse liver was perfused with 100mM DETC solution. After trapping NO, the nitrosylated Fe-DETC adducts are mostly in diamagnetic ferric state, with only a minor fraction having been reduced to paramagnetic ferrous state by endogenous biological reductants. In actual in vivo trapping experiments with mice, the condition of excess DETC was not met. The substantial quantities of iron in animal tissues were bound to ligands other than DETC, in particular citrate. These non-DETC complexes appear as roughly equal mixtures of ferric and ferrous iron. The presence of NO favors the replacement of non-DETC ligands by DETC. In all biological systems considered here, the nitrosylated Fe-DETC adducts appear as mixture of diamagnetic and paramagnetic states. The diamagnetic ferric nitrosyl complexes may be reduced ex vivo to paramagnetic form by exogenous reductants like dithionite. The trapping yields are significantly enhanced upon exogenous reduction, as proven by NO trapping experiments in plants, cell cultures and mice.  相似文献   

18.
Spin-trapping experiments in alkaline aqueous dimethyl sulfoxide (DMSO) solution using sodium 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) yielded a strong signal of the sulfur trioxide anion radical adduct. This radical adduct is identical to that obtained by the oxidation of sulfite with horseradish peroxidase/hydrogen peroxide and subsequent spin trapping with DBNBS. This radical adduct is very stable, and satellite peaks of the natural abundance 13C and 33S could be obtained. Apparently, under alkaline conditions DMSO decomposes in air to form the sulfur trioxide anion radical. A comparison with a recent publication shows that this DMSO-derived radical adduct has been misassigned as a uniquely stable spin adduct of superoxide (Ozawa and Hanaki (1986) Biochem. Biophys. Res. Commun. 136, 657-664).  相似文献   

19.
Tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy) has long been known to protect experimental animals from the injury associated with oxidative and inflammatory conditions. In the latter case, a parallel decrease in tissue protein nitration levels has been observed. Protein nitration represents a shift in nitric oxide actions from physiological to pathophysiological and potentially damaging pathways involving its derived oxidants such as nitrogen dioxide and peroxynitrite. In infectious diseases, protein tyrosine nitration of tissues and cells has been taken as evidence for the involvement of nitric oxide-derived oxidants in microbicidal mechanisms. To examine whether tempol inhibits the microbicidal action of macrophages, we investigated its effects on Leishmania amazonensis infection in vitro (RAW 264.7 murine macrophages) and in vivo (C57Bl/6 mice). Tempol was administered in the drinking water at 2 mM throughout the experiments and shown to reach infected footpads as the nitroxide plus the hydroxylamine derivative by EPR analysis. At the time of maximum infection (6 weeks), tempol increased footpad lesion size (120%) and parasite burden (150%). In lesion extracts, tempol decreased overall nitric oxide products and expression of inducible nitric oxide synthase to about 80% of the levels in control animals. Nitric oxide-derived products produced by radical mechanisms, such as 3-nitrotyrosine and nitrosothiol, decreased to about 40% of the levels in control mice. The results indicate that tempol worsened L. amazonensis infection by a dual mechanism involving down-regulation of iNOS expression and scavenging of nitric oxide-derived oxidants. Thus, the development of therapeutic strategies based on nitroxides should take into account the potential risk of altering host resistance to parasite infection.  相似文献   

20.
Membrane-based bioreactors can greatly influence the rate and extent of chemical reactions and consequently lower the costs associated with the corresponding engineering processes. However, in order to progress in this area, greater understanding of the relationship of the structure and function of bioreactor systems is required. In this study, a proteolytic enzyme, papain (EC 3.4.22.2), was covalently coupled onto the surface of a vinyl alcohol/vinyl butyral copolymer (PVB) membrane employing either glutaraldehyde (GA) or 1,1'-carbonyldiimidazole (CDI). Various kinetic and performance properties of the immobilized papain were studied. It was found that these characteristics of the membrane-bound papain depended on the immobilization method. The CDI-immobilized papain bioreactor was used, although the apparent Michaelis constant, Km, of the CDI-immobilized papain was larger than that of the GA-immobilized enzyme. In separate experiments, a six-carbon spacer was also used between the membrane support and the covalently-linked enzyme. It was found that the insertion of the spacer reduced the disturbance of the enzyme system, resulting in a decreased Km, which was now closer to the value for the free enzyme. Electron paramagnetic resonance (EPR) techniques of spin labeling were used for the first time to examine the conformational change and the active site structure of an enzyme covalently immobilized to a membrane. The structural changes of the active site of papain upon immobilization with and without a spacer were in agreement with the functional properties of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号