首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hin recombinase specifically recognizes its DNA-binding site by means of both major and minor groove interactions. A previous X-ray structure, together with new structures of the Hin DNA-binding domain bound to a recombination half-site that were solved as part of the present study, have revealed that two ordered water molecules are present within the major groove interface. In this report, we test the importance of these waters directly by X-ray crystal structure analysis of complexes with four mutant DNA sequences. These structures, combined with their Hin-binding properties, provide strong support for the critical importance of one of the intermediate waters. A lesser but demonstrable role is ascribed to the second water molecule. The mutant structures also illustrate the prominent roles of thymine methyls both in stabilizing intermediate waters and in interfering with water or amino acid side chain interactions with DNA.  相似文献   

2.
The FLP protein of the 2 microns plasmid of Saccharomyces cerevisiae promotes conservative site-specific recombination between DNA sequences that contain the FLP recognition target (FRT). FLP binds to each of the three 13 base pair symmetry elements in the FRT site in a site-specific manner. We have probed both major and minor groove contacts of FLP using dimethyl sulphate, monoacetyl-4-hydroxyaminoquinoline 1-oxide and potassium permanganate and find that the protein displays extensive interactions with residues of both the major and minor grooves of 10 base pairs of each symmetry element. We find no evidence that the FRT site assumes a single-stranded conformation upon FLP binding.  相似文献   

3.
Previous biochemical assays and a structural model of the protein have indicated that the dimer interface of the Hin recombinase is composed of two alpha-helices. To elucidate the structure and function of the helix, amino acids at the N-terminal end of the helix, where the two helices make their most extensive contact, were randomized, and inversion-incompetent mutants were selected. To investigate why the mutants lost their inversion activities, the DNA binding, hix pairing, invertasome formation, and DNA cleavage activities were assayed using in vivo and in vitro methodologies. The results indicated that the mutants could be divided into four classes based on their DNA binding activity. We propose that the alpha-helices might serve to place a DNA binding motif of Hin in the correct spatial relationship to the minor groove of the recombination site. All the mutants except those that failed to bind DNA were able to perform hix pairing and invertasome formation, suggesting that the dimer interface is not involved in either of these processes. The inversion-incompetent phenotype of the binders was caused by the inability of mutants to perform DNA cleavage. The mutants that showed less binding ability than the wild type nevertheless exhibited a wild-type level of hix pairing activity, because the hix pairing activity overcomes the defect in DNA binding. This phenotype of the mutants that are impaired in DNA binding suggests that the binding domains of Hin may mediate Hin-Hin interaction during hix pairing.  相似文献   

4.
The carboxyl-terminal domain of gamma delta resolvase binds to each half of the three resolvase binding sites that constitute the recombination site, res. Ethylation inhibition experiments show that the phosphate contacts made by the C-terminal DNA binding domain are similar to those made by intact resolvase, with the exception of a single phosphate at the inside end of each contact region which is contacted solely by the intact resolvase. The DNA binding domain makes essentially identical contacts to all 6 half sites, whereas the intact resolvase makes slightly different contacts to each binding site. Despite its small size, only 43 amino acid residues, the resolvase C-terminal domain interacts with an unusually large segment of DNA. Phosphate contacts extend across an adjacent major and minor groove of DNA and about one third of the circumference around the helix. The minimal binding segment, determined experimentally, is a 12 bp sequence that includes the 9 base pair inverted repeat (common to all half sites), the adjacent 3 base pairs (towards the center of the intact resolvase binding site), and phosphates at both ends.  相似文献   

5.
Vanadate induces DNA strand breaks in cultured human fibroblasts at doses that are relative to the occupational exposure. Oxovanadium compounds also exert preventive effects against chemical carcinogenesis in animals and form complexes with DNA in vivo. This study was designed to examine the interaction of calf-thymus DNA with VO2+ and VO3 ions in aqueous solution at physiological pH, with a constant DNA concentration of 12.5 mmol/L and vanadium-DNA (phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared difference spectroscopy were used to determine the cation binding site, the binding constant, the helix stability, and DNA conformation in the oxovanadium-DNA complexes. Structural analysis showed that VO2+ binds DNA through guanine and adenine N-7 atoms and the backbone PO2 group with apparent binding constants of KG = 8.8 x 10(5) (mol/L)-1 and KA = 3.4 x 10(5) (mol/L)-1. The VO3 shows weaker binding through thymine, adenine, and guanine bases, with K = 1.9 x 10(4) (mol/L)-1 and no interaction with the backbone phosphate group. A partial B-to-A DNA transition occurred upon VO-DNA complexation, while DNA remains in the B-family structure in the VO3 complexes.  相似文献   

6.
Several crystallographic, solution-state and theoretical studies carried out this past year provide new support for the sequence-specific nature of monovalent and divalent cation coordination within the DNA major and minor grooves. Correlations observed between groove width and cation coordination indicate that the grooves are flexible and respond to cation binding.  相似文献   

7.
The Hin recombinase mediates the site-specific inversion of a segment of the Salmonella chromosome between two flanking 26 bp hix DNA recombination sites. Mutations in two amino acid residues, R43 and R69 of the catalytic domain of the Hin recombinase, were identified that can compensate for loss of binding resulting from elimination of certain major and minor groove contacts within the hix recombination sites. With one exception, the R43 and R69 mutants were also able to bind a hix sequence with an additional 4 bp added to the centre of the site, unlike wild-type Hin. Purified Hin mutants R43H and R69C had both partial cleavage and inversion activities in vitro while mutants R43L, R43C, R69S, and R69P had no detectable cleavage and inversion activities. These data support a model in which the catalytic domain plays a role in DNA-binding specificity, and suggest that the arginine residues at positions 43 and 69 function to position the Hin recombinase on the DNA for a step in the recombination reaction which occurs either at and/or prior to DNA cleavage.  相似文献   

8.
Sequence-specific interaction of DNA and chromosomal protein   总被引:30,自引:0,他引:30  
  相似文献   

9.
10.
Incorporation of the DNA-cleaving moiety EDTA.Fe at discrete amino acid residues along a DNA-binding protein allows the positions of these residues relative to DNA bases, and hence the organization of the folded protein, to be mapped by high-resolution gel electrophoresis. A 52-residue protein, based on the sequence-specific DNA-binding domain of Hin recombinase (139-190), with EDTA at the NH2 terminus cleaves DNA at Hin recombination sites. The cleavage data for EDTA-Hin(139-190) reveal that the NH2 terminus of Hin(139-190) is bound in the minor groove of DNA near the symmetry axis of Hin-binding sites [Sluka, J. P., Horvath, S. J., Bruist, M. F., Simon, M. I., & Dervan, P. B. (1987) Science 238, 1129]. Six proteins, varying in length from 49 to 60 residues and corresponding to the DNA-binding domain of Hin recombinase, were synthesized by solid-phase methods: Hin(142-190), Hin(141-190), Hin(140-190), Hin(139-190), Hin(135-190), and Hin(131-190) were prepared with and without EDTA at the NH2 termini in order to test the relative importance of the residues Gly139-Arg140-Pro141-Arg142, located near the minor groove, for sequence-specific recognition at five imperfectly conserved 12-base-pair binding sites. Footprinting and affinity cleaving reveal that deletion of Gly139 results in a protein with affinity and specificity similar to those of Hin(139-190) but that deletion of Gly139-Arg140 affords a protein with altered affinities and sequence specificities for the five binding sites. It appears that Arg140 in the DNA-binding domain of Hin is important for recognition of the 5'-AAA-3' sequence in the minor groove of DNA. Our results indicate modular DNA and protein interactions with two adjacent DNA sites (major and minor grooves, respectively) bound on the same face of the helix by two separate parts of the protein.  相似文献   

11.
An artificial recombination site hixC composed of two identical half-sites that bind the Hin recombinase served as a better operator in vivo than the wild type site hixL (Hughes, K. T., Youderian, P., and Simon, M. I (1988) Genes & Dev. 2, 937-948). In vitro binding assays such as gel retardation assay and methylation protection assay demonstrated that Hin binds to hixC as tightly as it binds to hixL, even when the sites are located in negatively supercoiled plasmids. However, hixC served as a poor recombination site when it was subjected to the standard inversion assay in vitro. hixC showed a 16-fold slower inversion rate than the wild type. A series of biochemical assays designed to probe different stages of the Hin-mediated inversion reaction, demonstrated that Hin dimers bound to hixC have difficulty in forming paired hix site intermediates. KMnO4 and S1 nuclease assays detected an anomalous structure of the center of hixC only when the site was in negatively supercoiled plasmids. Mutational analysis in the central region of hixC and assays of paired hix site formation with topoisomers of the hixC substrate plasmid suggested that Hin is not able to pair hixC sites because of the presence of the anomalous structure in the center of the site. The structure does not behave like a DNA "cruciform" since Hin dimers still bind efficiently to the site. It is thought to consist of a short denatured "bubble" encompassing 2 base pairs. During the study of mutations in the center of hixC, it was found that Hin is not able to cleave DNA if a guanine residue is one of the two central nucleotides close to the cleavage site. Furthermore, Hin acts in a concerted fashion and cannot cleave any DNA strand if one of the four strands in the inversion intermediate is not cleavable.  相似文献   

12.
The interaction of Hoechst 33258 with the minor groove of the adenine-tract DNA duplex d(CTTTTGCAAAAG)2 has been studied in both D2O and H2O solutions by 1D and 2D 1H NMR spectroscopy. Thirty-one nuclear Overhauser effects between drug and nucleotide protons within the minor groove of the duplex, together with ring-current induced perturbations to the chemical shifts of basepair and deoxyribose protons, define the position and orientation of the bound dye molecules. Two drug molecules bind cooperatively and in symmetry related orientations at the centre of the 5'-TTTT and 5'-AAAA sequences with the binding interactions spanning only the four A-T basepairs. The positively charged N-methylpiperazine moieties point towards the centre of the duplex while the phenol groups are disposed towards the 3'-ends of the sequence. Resonance averaging is apparent for both the D2/D6 and D3/D5 phenol protons and D2"'/D6"' and D3"'/D5"' of the N-methylpiperazine ring and is consistent with these groups being involved in rapid rotation or ring-flipping motions in the bound state. Interstrand NOEs between adenine H2s and deoxyribose H1' are consistent with a high degree of propeller twisting of the A-T basepairs at the binding site of the aromatic benzimidazole and phenol rings of Hoechst. The data imply that the minor groove is particularly narrow with many contacts between the complementary curved surfaces of the drug and DNA indicating that strong van der Waals interactions, involving the floor and the walls of the minor groove, stabilize the complex. In our model the NH groups of the benzimidazole rings are positioned to make a pair of bifurcated hydrogen bonds with the adenine N3 and thymine O2 on the floor of the minor groove.  相似文献   

13.
Silyl-protected phenol derivatives serve as convenient precursors for generating highly electrophilic quinone methide intermediates under biological conditions. Reaction is initiated by addition of fluoride and has previously exhibited proficiency in DNA alkylation and cross-linking. This approach has now been extended to the modification of duplex DNA through triplex recognition and fluoride-dependent quinone methide induction. Both oligonucleotides of a model duplex were alkylated in a sequence specific manner by an oligonucleotide conjugate that is consistent with triplex association. Optimum reaction required the presence of the two complementary target sequences and a pH of below 6.5. In addition, one guanine in each strand adjacent to the triplex region was the predominant site of alkylation. The yield of modification varied from approximately 20% for the purine-rich strand to only 4% for the pyrimidine-rich strand. This surprising difference indicates that the linker between the recognition and reactive elements may limit productive interaction between the quinone methide and the reactive nucleophiles of DNA. Restricted orientation of this intermediate may also be responsible for the lack of target cross-linking at detectable levels.  相似文献   

14.
The interaction of sigma subunit of E. coli RNA polymerase with DNA, either double or single-stranded, and with two inhibitors of RNA synthesis was investigated by using antibodies directed against the subunit. Free sigma subunit was shown to interact with poly(dA), poly(dT), poly(dAC).poly(dGT), T7 DNA and, to a lesser degree, with lambda DNA. When the sigma subunit forms part of the holo enzyme, sigma also interacts with poly(dG).poly(dC). Rifampicin and streptolydigin interact with sigma in the holo enzyme and with free and core bound sigma subunit, respectively. The results suggest that sigma recognizes mainly AC-GT-sequences in double-stranded DNA. The findings are correlated with the base composition in RNA polymerase binding regions of promoters and suggest at least a general interaction between sigma subunit and single-stranded DNA in open complexes.  相似文献   

15.
Design, synthesis and physico-chemical studies of new pyrimidine oligo(2'-O-methylribonucleotide) conjugates with one or two oligo(pyrrolecarboxamide) minor groove binders (MGB) are described.  相似文献   

16.
The MspI methyltransferase (M.MspI) recognizes the sequence CCGG and catalyzes the formation of 5-methylcytosine at the fist C-residue. We have investigated the sequence-specific DNA-binding properties of M.MspI under equilibrium conditions, using gel-mobility shift assays and DNasel footprinting. M.MspI binds to DNA in a sequence-specific manner either alone or in the presence of the normal methyl donor S-adenosyl-L-methionine as well as the analogues, sinefungin and S-adenosyl-L-homocysteine. In the presence of S-adenosyl-L-homocysteine, M.MspI shows the highest binding affinity to DNA containing a hemimethylated recognition sequence (Kd = 3.6 x 10(-7) M), but binds less well to unmethylated DNA (Kd = 8.3 x 10(-7) M). Surprisingly it shows specific, although poor, binding to fully methylated DNA (Kd = 4.2 x 10(-6) M). M.MspI binds approximately 5-fold more tightly to DNA containing its recognition sequence, CCGG, than to nonspecific sequences in the absence of cofactors. In the presence of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine or sinefungin the discrimination between specific and non-specific sequences increases up to 100-fold. DNasel footprinting studies indicate that 16 base pairs of DNA are covered by M.MspI, with the recognition sequence CCGG located asymmetrically within the footprint.  相似文献   

17.
Sequence-specific DNA modification in Neisseria gonorrhoeae.   总被引:19,自引:8,他引:11       下载免费PDF全文
C Korch  P Hagblom    S Normark 《Journal of bacteriology》1983,155(3):1324-1332
  相似文献   

18.
The bipartite geminiviruses such as tomato golden mosaic virus (TGMV) and squash leaf curl virus (SqLCV) have two single-stranded circular genomic DNAs, the A and B components, thought to be replicated from double-stranded circular DNA intermediates. Although it has been presumed that the origin sequences for viral replication are located in the highly conserved 200-nucleotide common region (CR) present in both genomic components and that the viral-encoded AL1 protein interacts with these sequences to effect replication, there has been no evidence that this is in fact so. We have investigated these questions, demonstrating selectivity and sequence specificity in this protein-DNA interaction. Simple component switching between the DNAs of TGMV and SqLCV and analysis of replication in leaf discs showed that whereas the A components of both TGMV and SqLCV promote their own replication and that of their cognate B component, neither replicates the noncognate B component. Furthermore, using an in vivo functional replication assay, we found that cloned viral CR sequences function as a replication origin and direct the replication of nonviral sequences in the presence of AL1, with both circular single-stranded and double-stranded DNA being synthesized. Finally, by the creation of chimeric viral CRs and specific subfragments of the viral CR, we demonstrated sequence-specific recognition of the replication origin by the AL1 protein, thereby localizing the origin to an approximately 90-nucleotide segment in the AL1 proximal side of the CR that includes the conserved geminiviral stem-loop structure and approximately 60 nucleotides of 5' upstream sequence. By deletional analysis, we further demonstrated that the conserved stem-loop structure is essential for replication. These studies identify the functional viral origin of replication within the CR, demonstrating that sequence-specific recognition of this origin by the AL1 protein is required for replication.  相似文献   

19.
The involvement of the Fe cations in autoxidation in cells and tissues is well documented. DNA is a major target in such reaction, and can chelate Fe cation in many ways. The present study was designed to examine the interaction of calf-thymus DNA with Fe(II) and Fe(III), in aqueous solution at pH 6.5 with cation/DNA (P) (P = phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the cation binding site, the binding constant, helix stability and DNA conformation in Fe-DNA complexes. Structural analysis showed that at low cation concentration (r = 1/80 and 1/40), Fe(II) binds DNA through guanine N-7 and the backbone PO(2) group with specific binding constants of K(G) = 5.40 x 10(4) M(1) and K(P) = 2.40 x 10(4) M(1). At higher cation content, Fe(II) bindings to adenine N-7 and thymine O-2 are included. The Fe(III) cation shows stronger interaction with DNA bases and the backbone phosphate group. At low cation concentration (r = 1:80), Fe(III) binds mainly to the backbone phosphate group, while at higher metal ion content, cation binding to both guanine N-7 atom and the backbone phosphate group is prevailing with specific binding constants of K(G) = 1.36 x 10(5) M(-1) and K(P) = 5.50 x 10(4) M(-1). At r = 1:10, Fe(II) binding causes a minor helix destabilization, whereas Fe(III) induces DNA condensation. No major DNA conformational changes occurred upon iron complexation and DNA remains in the B-family structure.  相似文献   

20.
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5′–C5′–C4′–C3′) are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein–nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein–DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号