共查询到20条相似文献,搜索用时 0 毫秒
1.
Aflatoxin inhibition of template activity of rat liver chromatin 总被引:1,自引:0,他引:1
2.
3.
Following earlier observations on the retention of 5-hydroxytryptamine oxidizing activity by a purified preparation of monoamine oxidase from rat liver mitochondria, this fraction has been obtained in a water-soluble form by Triton X-100 gradient gel filtration and DEAE-Bio-Gel A chromatography. The soluble fraction appears to depend on Triton X-100 and phospholipids for its activity. The results seem to implicate membrane lipid components in the expression of rat liver mitochondrial monoamine oxidase activity. 相似文献
4.
The percent of mitochondrial protein contamination in nuclei decreased 10-fold (from 18 to 1.8%) under purification of protein-labelled mitochondria before their introduction into nuclei-free homogenate, cytochromoxidase activity being unchanged. Thus, cytochromoxidase activity of nuclei does not correlate with the amount of nuclei-adsorbed mitochondrial protein, which demonstrates the presence of nuclear cytochromoxidase independent on mitochondrial protein. Radioactivity of protein-labelled mitochondria is proportially distributed between globuline, deoxyribonucleoprotein, acid and residual nuclear proteins, as it is shown under fractionation of nuclei isolated from protein-labeled mitochondria containing homogenate. The comparison of mitochondrial protein contamination of nuclear membranes and their possible contamination with cytochromoxidase and suecinate-cytochrome-c-reducatase activities revealed that cytochromoxidase activity of nuclear membranes is twice higher and succinate-cytochrome-c-reductase activity is considerably lower than it can be referred to mitochondrial protein contamination. The ratio of cytochrome-c-oxidase and succinate-cytochrome-c-reductase activities in isolated nuclear membranes is 4-7 times as high as that in mitochondrial membranes under the same isolation procedure. The data obtained make possible to consider the cytochromoxidase activity of nuclear membranes to be really nuclear enzyme, and not a contominant of nucleipreparation with mitochondrial membranes. 相似文献
5.
Thomas W. Kensler William F. Busby Nancy E. Davidson Gerald N. Wogan 《Biochimica et Biophysica Acta (BBA)/General Subjects》1976,437(1):200-210
The effect of aflatoxin B1 on the binding capacity of rat liver cytoplasmic glucocorticoid receptors and the nuclear binding of the activated receptor complex was investigated. No alterations in the kinetics of [3H]dexamethasonccytosol receptor complex formation were noted 2 h after treatment with 1 mg/kg aflatoxin B1. However, a 33% decrease in the concentration of nuclear acceptor sites and a 24% decrease in the glucocorticoid receptor-nuclear binding equilibrium constant of dissociation was observed. This response was near maximal at 2 h and persisted for at least 36 h. Inhibition of nuclear binding capacity was directly related to aflatoxin B1 dose, with a correlation coefficient of 0.99. Actinomycin D treatment (0.1 mg/kg) resulted in a slight reduction (16%) in the concentration of nuclear acceptor sites but had no effect on the nuclear binding dissociation constant.Administration of [3H]dexamethasone to aflatoxin B1-treated rats produced a similar pattern of glucocortocoid binding distribution in vivo to that observed in vitro. No differences in [3H]dexamethasone-cytoplasmic receptor binding between control and aflatoxin B1-treated rats were found, whereas nuclear [3H]dexamethasone binding was reduced 34% by aflatoxin B1 treatment. 相似文献
6.
Both Km and Vmax values of cytochrome c oxidase for cytochrome c were elevated in oleic acid-incorporated mitochondria, whereas the amount of oleic acid incorporated into submitochondrial particles was smaller than that into mitochondria and the fatty acid had little effect on the enzyme activity. The degree of change in the bulk membrane fluidity was, however, almost the same in mitochondria and submitochondrial particles. Solubilized cytochrome c oxidase was insensitive to the effect of oleic acid. Oleic acid may act as a modifier of the interaction between cytochrome c oxidase and membrane lipids. 相似文献
7.
Nitric oxide can inhibit mitochondrial cytochrome oxidase in both oxygen competitive and uncompetitive modes. A previous model described these interactions assuming equilibrium binding to the reduced and oxidised enzyme respectively (Mason, et al. Proc. Natl. Acad. Sci. U S A 103 (2006) 708-713). Here we demonstrate that the equilibrium assumption is inappropriate as it requires unfeasibly high association constants for NO to the oxidised enzyme. Instead we develop a model which explicitly includes NO binding and its enzyme-bound conversion to nitrite. Removal of the nitrite complex requires electron transfer to the binuclear centre from haem a. This revised model fits the inhibition constants at any value of substrate concentration (ferrocytochrome c or oxygen). It predicts that the inhibited steady state should be a mixture of the reduced haem nitrosyl complex and the oxidized-nitrite complex. Unlike the previous model, binding to the oxidase is always proportional to the degree of inhibition of oxygen consumption. The model is consistent with data and models from a recent paper suggesting that the primary effect of NO binding to the oxidised enzyme is to convert NO to nitrite, rather than to inhibit enzyme activity (Antunes et al. Antioxid. Redox Signal. 9 (2007) 1569-1579). 相似文献
8.
Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase 总被引:16,自引:0,他引:16
Brown GC 《Biochimica et biophysica acta》2001,1504(1):46-57
Nitric oxide (NO) and its derivatives inhibit mitochondrial respiration by a variety of means. Nanomolar concentrations of NO immediately, specifically and reversibly inhibit cytochrome oxidase in competition with oxygen, in isolated cytochrome oxidase, mitochondria, nerve terminals, cultured cells and tissues. Higher concentrations of NO and its derivatives (peroxynitrite, nitrogen dioxide or nitrosothiols) can cause irreversible inhibition of the respiratory chain, uncoupling, permeability transition, and/or cell death. Isolated mitochondria, cultured cells, isolated tissues and animals in vivo display respiratory inhibition by endogenously produced NO from constitutive isoforms of NO synthase (NOS), which may be largely mediated by NO inhibition of cytochrome oxidase. Cultured cells expressing the inducible isoform of NOS (iNOS) can acutely and reversibly inhibit their own cellular respiration and that of co-incubated cells due to NO inhibition of cytochrome oxidase, but after longer-term incubation result in irreversible inhibition of cellular respiration due to NO or its derivatives. Thus the NO inhibition of cytochrome oxidase may be involved in the physiological and/or pathological regulation of respiration rate, and its affinity for oxygen. 相似文献
9.
Development of some mitochondrial oxidase systems of rat liver 总被引:3,自引:0,他引:3
10.
Takemi Yoshida Akio Uchida Toshinori Yamamoto Yukio Kuroiwa 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,677(2):280-286
The activities of mitochondrial type A and B monoamine oxidase were determined in the liver of rats fed a diet containing 2-acetylaminofluorene (AAF). Three days after the initiation of AAF-feeding, there was a significant decrease of type B monoamine oxidase activity without affect on type A enzyme. The decreased activity of type B monoamine oxidase, which reached a minimum after three weeks, was sustained for as long as AAF-feeding was continued. Sex-related difference in response to AAF was seen in the rat with respect to the onset and the intensity of the decreased type B monoamine oxidase activity, male rats being more sensitive to the carcinogen than female rats. In contrast to the in vivo effect, AAF showed a potent inhibitory effect on type A monoamine oxidase, rather than on type B enzyme, when added in vitro. The pI50 values were estimated to be 7.5 against type A monoamine oxidase and 4.1 against type B enzyme, respectively. The in vitro inhibition of both types of monoamine oxidase by AAF was competitive. The Ki values for AAF were calculated to be 9.51 · 10?9 M for type A monoamine oxidase and 1.30 · 10?5 M for type B enzyme, respectively. In accordance with the potent inhibitory effect of AAF on type A monoamine oxidase in vitro, a single administration of the carcinogen, at a dose of 50 mg/kg, resulted in a marked and temporal decrease of the enzyme activity in the mitochondria of male rat liver. Recovery of the decreased type B monoamine oxidase activity was slow, and the enzyme activity did not return to control levels, even if rats were fed the basal diet for 2 or 4 weeks after the cessation of AAF-feeding. 相似文献
11.
Optimum conditions are developed for ultracytochemical detection of cytochrome oxidase in cardiomyocytes from the rat heart ventricles. Conditions mentioned above rest on using of o-dianisidine and double contrasting of microscopic sections by uranyl and lead acetates. Data from studies in heterogeneity of cytochrome oxidase activity as dependent on the structural-functional state (electronic density) of myocardium cells are presented. 相似文献
12.
13.
14.
To solve the problem of whether a common enzyme catalyzes both 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylation and 25-hydroxylation of 1 alpha-hydroxyvitamin D3 (a synthetic compound used therapeutically for vitamin D-deficient diseases) in rat liver mitochondria, enzymological and kinetic studies were performed. A cytochrome P-450 was purified from female rat liver mitochondria based on these catalytic activities and it was found that the two enzyme activities accompanied each other at all purification steps. The 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylation activity of the final preparation had a turnover number of 36 min-1, and the value of the corresponding 1 alpha-hydroxyvitamin D3 25-hydroxylation activity was 1.4 min-1. When the enzyme was partially denatured by heating at different temperatures, both enzyme activities declined in a parallel fashion. Treatment of the enzyme with N-bromosuccinimide decreased both enzyme activities in a similar manner. 5 beta-Cholestane-3 alpha,7 alpha,12 alpha-triol competitively inhibited 25-hydroxylation of 1 alpha-hydroxy-vitamin D3 and vice versa. From these results it was concluded that 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol 27-hydroxylation and 1 alpha-hydroxyvitamin D3 25-hydroxylation are catalyzed by a common enzyme in rat liver mitochondria. 相似文献
15.
16.
Rat liver cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into 12 different polypeptide chains. Specific antisera against the holoenzyme and against purified subunits IV and VIII were used to characterize the enzyme complex. The antiserum against subunit IV precipitates from sodium dodecyl sulfate-dissociated mitochondria only subunit IV and from Triton X-100-dissolved mitochondria all 12 polypeptide chains, indicating their integral location within the enzyme complex. Different antisera against the holoenzyme only precipitate subunits IV, V and VIb from sodium dodecyl sulfate-dissociated mitochondria, suggesting the location of these subunits on the surface layer of the complex. Subunit VIII is thought to be located within the complex, since a specific antiserum does not precipitate the complex. The amino acid composition of all 12 protein subunits is different, thus excluding their origin from proteolytic degradation. The proteolytic degradation of subunit IV into IV during isolation of the enzyme was corroborated by the very similar amino acid composition of both proteins. 相似文献
17.
I S Deverina 《Biokhimii?a (Moscow, Russia)》1980,45(10):1897-1908
The inhibition by chlorgyline and deprenyl of deamination of tyramine, i. e. substrate of two forms of monoamine oxidase (MAO) A and B, by fragments of rat liver mitochondrial membrane and the effects of competitive reversible inhibitors of the MAO activity, e. g. 4-ethylpyridine, benzyl alcohol, O-benzyl-hydroxylamine and 2-oxyquinoline, on this process were studied. It was shown that all the inhibitors used sharply increase the inhibiting effect of chlorgyline on tyramine deamination, the degree of the stimulating effect being the same irrespective of whether the inhibitors are added to the samples before or after a 30-min preincubation of chlorgyline with the enzyme at 23 degrees, i. e. after the onset of irreversible inhibition. The stimulating effect is due to the independent action of two inhibitors on the two different sites of the MAO active center: chlorgyline--on the isoalloxazine ring of FAD, that of 4-ethylpyridine, benzyl alcohol, O-benzylhydroxylamine, 2-oxyquinoline, respectively, on the hydrophobic region involved in tyramine binding. In similar experiments with deprenyl all the competitive inhibitors used, when added to the samples after a 30-min incubation of the inhibitor with the enzyme at 23 degrees, remove the inhibiting effect of deprenyl on tyramine deamination. The decrease of the inhibiting effect of deprenyl is indicative of an existence of competitive interactions between deprenyl and the above-mentioned compounds and of the reversible inhibition by deprenyl of tyramine deamination under the given experimental conditions. The data obtained revealed the differences in the type and mechanism of action of chlorgyline and deprenyl on tyramine deamination and showed that these inhibitors act on different sites of the MAO active center, responsible for tyramine oxidation. Chlorgyline blocks primarily the "flavin moiety" of the MAO molecule, essential for the catalytic act, while the effect of deprenyl is directed to the hydrophobic part of the enzyme active center essential for the enzyme binding to tyramine. In this case the irreversible inhibiting effect is achieved at a slower rate and the reversibility of tyramine oxidation by deprenyl is maintained for a longer period of time than the chlorgyline inhibition of deamination of this amine. 相似文献
18.
1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O(2) concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN(3), benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. 相似文献
19.
20.
A R Goeptar J M Te Koppele E P Neve N P Vermeulen 《Chemico-biological interactions》1992,83(3):249-269
The main objective of the present study was to investigate the proposed role of cytochrome P450 in the reductive metabolism of quinones as well as in the formation of reduced oxygen species in liver microsomes from phenobarbital (PB-microsomes) and beta-naphthoflavone (beta NF-microsomes) pretreated rats. In the present study, 2,3,5,6-tetramethylbenzoquinone (TMQ) was chosen as a model quinone. Anaerobic one-electron reduction of TMQ by PB-microsomes showed relatively strong electron spin resonance (ESR) signals of the oxygen-centered semiquinone free radical (TMSQ), whereas these signals were hardly detectable with beta NF-microsomes. Under aerobic conditions TMSQ formation was diminished and concomitant reduction of molecular oxygen occurred in PB-microsomes. Interestingly, TMQ-induced superoxide anion radicals, measured by ESR (using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide), and hydrogen peroxide generation was found to occur with beta NF-microsomes as well. Furthermore, SK&F 525-A (a type I ligand inhibitor of cytochrome P450) inhibited TMQ-induced hydrogen peroxide formation in both PB- and beta NF-microsomes. However, metyrapone and imidazole (type II ligand inhibitors of cytochrome P450) inhibited molecular oxygen reduction in beta NF-microsomes and not in PB-microsomes. The present study indicates that cytochrome P450-mediated one-electron reduction of TMQ to TMSQ and subsequent redox cycling of TMSQ with molecular oxygen constitutes the major source for superoxide anion radical and hydrogen peroxide generation in PB-microsomes (i.e. from the reductase activity of cytochrome P450). However, most of the superoxide anion radical formed upon aerobic incubation of TMQ with beta NF-microsomes originates directly from the dioxyanion-ferri-cytochrome P450 complex (i.e. from the oxidase activity of cytochrome P450). In conclusion, both the one-electron reduction of TMQ and molecular oxygen were found to be cytochrome P450 dependent. Apparently, both the reductase and oxidase activities of cytochrome P450 may be involved in the reductive cytotoxicity of chemotherapeutic agents containing the quinoid moiety. 相似文献