首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we have identified a 72-kDa cell surface concanavalin A binding glycoprotein (cbg 72) involved in the chick embryo fibroblast (CEF) adhesion onto laminin (LM) substrate. The cbg 72 was shown to interact specifically with immobilized laminin and to be resistant to Triton X-100 extraction when CEF were plated on laminin substrate but not on fibronectin (FN) substrate. This behavior suggested that cbg 72 could interact with cytoskeletal elements during cell spreading onto LM. This assumption is also in good agreement with the partitioning of cbg 72 in Triton X-114. Isolated cbg 72 specifically inhibited CEF spreading onto LM after their initial attachment, whereas cbg 72 did not impair the spreading of CEF onto FN. These data provide a molecular explanation to the inhibition of CEF spreading onto LM observed in the presence of the lectin concanavalin A (P. Codogno, M.-A. Doyennette-Moyne, J. Botti, and M. Aubery, 1988, J. Cell Physiol. 136, 463-470). Moreover, these results provide evidence for the role of a novel LM binding glycoprotein during the adhesion of mesenchymal derived cells. The relationship between cbg 72 and other known cell surface LM binding sites or receptors is discussed.  相似文献   

2.
3.
Prion diseases are characterized by the presence of an abnormal isoform of the cellular prion protein (PrPc) whose physiological role still remains elusive. To better understand the function of PrPc, it is important to identify the different subcellular localization(s) of the protein and the different partners with which it might be associated. In this context, the PrPc-lectins interactions are investigated because PrPc is a sialoglycoprotein which can react with lectins which are carbohydrate-binding proteins. We have previously characterized a nuclear lectin CBP70 able to recognize N-acetyl-beta-D-glucosamine residues in HL60 cells. Using confocal immunofluorescence, flow-cytofluorometry, and Western-blotting, we have found that PrPc is expressed in the nucleus of the NB4 human promyelocytic leukemia cell line. It was also found that the lectin CBP70 is localized in NB4 cell nuclei. Moreover, several approaches revealed that PrPc and CBP70 are colocalized in the nucleus. Immunoprecipitation experiments showed that these proteins are coprecipitated and interact via a sugar-dependent binding moiety. In conclusion, PrPc and CBP70 are colocalized in the nuclear compartment of NB4 cells and this interaction may be important to better understand the biological function and possibly the conversion process of PrPc into its pathological form (PrPsc).  相似文献   

4.
The lectin concanavalin A (conA; 25 micrograms/ml) inhibits conjugation in the ciliate Tetrahymena, and binds to receptors localized at the junction between conjugating cells. We report here that succinyl-conA (30 micrograms/ml) has similar activity, but that two other mannosespecific lectins, lentil and pea lectins, have inhibitory activities more than tenfold lower in this system, indicating that factors other than mannose specificity are essential for biological activity. By using fluorescein-isothiocyanate (FITC)-conA, we have found that extraction of cells with the detergent Triton X-100 removes conA receptors from the extraction-resistant cytoskeleton, but that the binding of conA to its receptor before extraction associates the ligand-receptor complex with the cytoskeleton. Under the hypothesis that the conA receptor may be a mating type receptor, we have used this ligand-induced differential cytoskeletal association, in conjunction with electrophoresis and Western blotting, to identify a glycoprotein with an apparent molecular weight (MW) of 23,000 D which may be a mating type receptor. Our data are consistent with a model in which a direct interaction between the conA receptor and the cytoskeleton, rather than receptor cross-linking, is the biologically significant activity of ligand binding.  相似文献   

5.
The subcellular plurilocalization of some lectins (galectin-1, galectin-3, galectin-10, calreticulin, etc.) is an intriguing problem, implying different partners according to their localization, and involvement in a variety of cellular activities. For example, the well-known lectin, galectin-3, a lactose-binding protein, can act inside the nucleus in splicing events, and at the plasma membrane in adhesion, and it was demonstrated that galectin-3 interacts in the cytoplasm with Bcl-2, an antiapoptotic protein. Some years ago, our group isolated a nuclear lectin CBP70, capable of recognizing N-acetylglucosamine residues. This lectin, first isolated from the nucleus of HL60 cells, was also localized in the cytoplasm. It has been demonstrated that CBP70 is a glycosylated lectin, with different types of glycosylation, comparing cytoplasmic and nuclear forms. In this article, we have studied the localization of CBP70 in undifferentiated HL60 cells by electron microscopy, immunofluorescence analysis, and subcellular fractionation. The results obtained clearly demonstrated that CBP70 is a plurilocalized lectin that is found in the nucleus, at the endoplasmic reticulum, the Golgi apparatus, and mitochondria, but not at the plasma membrane. Because CBP70, a nuclear glycoprotein, was found to be associated also with the endoplasmic reticulum and the Golgi apparatus where the glycosylation take place, it raised the question: where does the glycosylation of nuclear proteins occur?  相似文献   

6.
The polypeptide composition and functional activity of cell-wall lectins from roots of winter wheat (Triticum aestivum L., cv. Mironovskaya 808) seedlings during cold hardening were studied. Several phases of lectin activity changes were observed, which indicates their involvement in the development of general adaptation syndrome of the cell. After 0.5-h low-temperature treatment, marked alterations occurred in the profile of protein elution: lectins with mol wts of 78 and 42.5 kD disappeared and new ones with mol wts of 72, 69, 37, and 34.5 kD appeared. It was established that 17.5-and 69-kD lectins and most lectins eluted with glucose were arabinogalactan proteins (AGP), which permitted a supposition that these lectins were involved in the interaction between the cell wall and cytoskeleton. After 7-day-long hardening, total protein content reduced and lectins with mol wts of 69 and 37 kD disappeared, which corresponded to reduced lectin activity by the end of hardening. A transient appearance of 37-and 69-kD lectins, which are AGP, might indicate their involvement in the triggering the development of plant-cell defense responses.  相似文献   

7.
Nuclear proteins were extracted in 2 M NaCl from membrane-depletednuclei isolated from HL60 cells. Extracted proteins were submittedto affinity chromatography columns containing immobilized glucose,galactose or lactose. The polypeptides present in the differenteluted fractions were resolved by SDS—PAGE and were eithersilver stained or analysed by immunoblotting with monoclonalor polyclonal antibodies, respectively, raised against the glucose-bindingprotein CBP67 and the galactose-binding proteins CBP35 and L14.The results presented here show that HL60 cell nuclei containCBP35 and a glucose-binding lectin of 70 kDa (CBP70). Thesedata account for the previously reported binding of neoglyco-proteinscontaining glucosyl and galactosyl residues to HL60 cell nuclei.Furthermore, the present study provides the new informationthat CBP35 can associate with CBP70 by interactions dependenton the binding of CBP35 to lactose, and the results of someaffinity chromatography experiments strongly suggest that CBP35and CBP70 associate by protein—protein interactions. Thepotential function of this lactose-mediated interaction is discussedwith respect to data recently reported by others showing thatCBP35 is involved in in vitro mRNA splicing and that lactoseinhibits the processing of the pre-RNA substrate. HL60 lectins nucleus protein—protein interactions  相似文献   

8.
9.
Some years ago, a lectin designated CBP70 that recognized glucose (Glc) but had a stronger affinity for N-acetylglucosamine (GlcNAc), was first isolated from HL60 cell nuclei. Recently, a cytoplasmic form of this lectin was described, and one 82 kDa nuclear ligand was characterized for the nuclear CBP70. In the present study, the use of Pronase digestion and the trifluoromethanesulphonic acid (TFMS) procedure strongly suggest that the nuclear and the cytoplasmic CBP70 have a same 23 kDa polypeptide backbone and, consequently, could be the same protein. In order to know the protein better and to obtain the best recombinant possible in the future, the post-translational modification of the nuclear and cytoplasmic CBP70 was analyzed in terms of glycosylation. Severals lines of evidence indicate that both forms of CBP70 are N- and O-glycosylated. Surprisingly, this glycosylation pattern differs between the two forms, as revealed by β-elimination, hydrazinolysis, peptide-N-glycosydase F (PNGase F), and TFMS reactions. The two preparations were analyzed by affinity chromatography on immobilized lectins [Ricinus communis-I agglutinin (RCA-I), Arachis hypogaea agglutinin (PNA), Galanthus nivalis agglutinin (GNA), and wheat germ agglutinin (WGA)] and by lectin-blotting analysis [Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Lotus tetragonolobus (Lotus), succinylated-WGA, and Psathyrella velutina agglutinin (PVA)]. Both forms of CBP70 have the following sugar moities: terminal βGal residues, Galβ1–3 GalNAc, Man α1–3 Man, sialic acid α2–6 linked to Gal or GalNAc; and sialic acid α2–3 linked to Gal. However, only nuclear CBP70 have terminal GlcNAc and α-L-fucose residues. All these data are consistent with the fact that different glycosylation pattern found for each form of CBP70 might act as a complementary signal for cellular targeting. J. Cell. Biochem. 66:370–385, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
The structural determinants required for interaction of oligosaccharides with leukoagglutinating phytohemagglutinin (L-PHA) and erythroagglutinating phytohemagglutinin (E-PHA) from Phaseolus vulgaris have been studied by immobilized lectin affinity chromatography. Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of L- and E-PHA-agarose. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. In virtually all cases, L- and E-PHA yielded identical results, indicating that their specificities for reduced oligosaccharides are similar. Both lectins retarded oligosaccharides bearing alpha 2,3- but not alpha 2,6-linked sialic acid. Desialylated oligosaccharides containing one, two, three, or four peripheral N-acetyllactosamine-type branches were retarded to varying extents by both lectins; however, this interaction was decreased or eliminated by removal of Gal. Desialylated oligosaccharides containing a bisecting GlcNAc residue attached to the beta-linked core Man displayed the greatest interaction with both lectins. Structures containing terminal sulfate or GalNAc did not interact with either lectin. In some instances, the specificities of L- and E-PHA lectins for free, reduced oligosaccharides differed from those established using glycopeptides. Therefore, the structural requirements for interaction with lectins such as L- and E-PHA must be fully and systematically defined using the appropriate authentic standards in order to use lectin affinity chromatography for the fractionation and characterization of free oligosaccharides.  相似文献   

11.
The immobilized lectin from the lentil (Lens culinaris) specifically binds two fractions out of the L. culinaris seed globulins. Both fractions are displaced from the lectin at low pH values. In addition, fraction I fails to interact at high ionic strengths, and fraction II in the presence of glucose or other lectin-specific sugars. The behaviour in zonal isoelectric precipitation and electrophoretical patterns indicate that both fractions represent subpopulations of the storage proteins. The interaction as demonstrated by affinity chromatography is corroborated by nephelometry: If the dissolved proteins (lectin plus fraction I or fraction II) are mixed under proper conditions the solutions become turbid. An even more pronounced interaction is observed if the lectin is reacted with both fractions at the same time. Seed albumins able to interact with the immobilized lectin include the dissolved lectin and two glycosidases (alpha-mannosidase, alpha-galactosidase) all of which are located in the protein bodies. A third glycosidase (beta-galactosidase) from outside of the protein bodies does not bind to the lectin. The results are discussed in view of the possibility that lectins may serve as packaging aids for other proteins in the protein bodies.  相似文献   

12.
Identifying glycoconjugate-binding domains. Building on the past.   总被引:1,自引:0,他引:1  
G D Holt 《Glycobiology》1991,1(4):329-336
The molecular details of how glycoconjugate-binding proteins interact with their ligands have been revealed by a variety of techniques. For example, proteases, chemical-modifying reagents and antibodies have served as effective probes of lectin functional domains. Protein crystallography has providing insight into how lectins are structured, and aided in determining which amino acids in these proteins are positioned appropriately for bond formation with glycoconjugates. In addition, the characterization and sequencing of naturally occurring, non-functional lectin variants have led to the identification of amino acids which play critical roles in a lectin's glycoconjugate-binding domain. Similarly, studies of lectin mutants produced by site-directed mutagenesis, and of synthetic peptides that mimic lectin binding properties, have demonstrated the importance of particular amino acids for glycoconjugate binding. An alternate approach to understanding lectin functional domains has been to compare the primary sequences of these proteins to reveal common sequence elements which allow them to be organized into families. For example, the discovery of amino acid homologies dispersed over long segments of the primary sequences of several lectins has suggested that many of these proteins have a related three-dimensional organization. In addition, the identification of more highly focused regions of sequence homology has indicated that many structures within the lectin glycoconjugate-binding domains themselves may be conserved. Scanning protein data banks for sequences homologous to known lectins has led to the identification of several previously unrecognized lectins, and aided in determining what portions of these proteins function in their glycoconjugate-binding domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Laminins constitute a family of heterotrimeric glycoproteins of basement membranes. Laminins promote cell adhesion, migration, growth, and differentiation. So far, at least 12 different isoforms of laminin have been known. However, no sufficient knowledge is available on the nature of cell response on different laminins. The study was aimed to compare adhesive properties of two laminin isoforms, laminin-1 and laminin-2/4, with respect to normal (freshly isolated keratinocytes) and transformed (A-431) human skin cells. We have used the following assays: cell adhesion to the substrate covered with laminin isoformes, interaction of latex beads (D = 1 micron) coated with the same proteins with cells in suspension, and a comparative study of the cytoskeleton structure of cells spread on the immobilized laminins. It was demonstrated that laminin-2/4 is a more effective potent promotor of adhesion for both normal keratinocytes and transformed A-431 cells, compared with laminin-1. A comparison of many attached protein-covered beads allowed to estimate a relative quantity of cell surface receptors to laminin isoforms in different cell types. The relative number of receptors to laminin-2/4 on the keratinocyte surface is 7 times higher than that to laminin-1 after a 30 min incubation with cells, and is 6 times higher after 1 hour. As for A-431 cells, their attachment to laminin-2/4 beads is 5 times higher than that to laminin-1-beads after a 1 min incubation, but as early as after 5 min this distinction disappeared, owing to bead internalization. The presence of a specific receptor to laminin-2/4 but not to laminin-1 on the keratinocyte surface has been suggested. Keratin differences in cytoskeleton organization in normal and transformed skin cells spread on the substrates covered with laminin-1 and laminin-2/4 were demonstrated.  相似文献   

15.
CBP70 is a glycoslylated lectin that interacts through either glycan-lectin or protein-protein interactions. In addition, depending on its cellular localization, this lectin has different partners, for example, galectin-3, an 82-kDa ligand in the nucleus, or Bcl-2 in the cytoplasm. In this study, we observed the persistence of plurilocalized lectin CBP70 after two heat-shock treatments conducted either under mild conditions, i.e., incubating the cells for 1 h at 42 degrees C then for 1, 3, 5, 7, or 9 h at 37 degrees C, or harsh conditions, i.e., incubation at 42 degrees C for 1, 2, 4, 6, 8, or 10 h. By combining the information collected from biochemical, fluorocytometric, confocal, and affinity-chromatography analyses, we concluded that CBP70 persisted in HL60 cells and its N-acetylglucosamine-binding sites remained active after all the heat-shock treatments tested. These data and the previously published findings reviewed in this report concur in supporting the hypothesis that CBP70 could function as an organizer of multimeric assembly, leading to the formation of various complexes in different cellular compartments, according to the needs of the cell.  相似文献   

16.
The purpose of the present study is to explore the possibility that plant lectins can be used for the development of rapid and inexpensive technique for differentiation of mycobacterial species. The method is based on interaction between mycobacteria and lectins as visualized by agglutination in a microtiter plate. We employed 18 mycobacterium species and determined the minimal lectin concentration (MLC) of 23 different lectins. For some of the bacteria as a high as 1000 microg/ml of one or more lectins were required to induce agglutination, while for other strains as low as 1.95 microg/ml of the lectin were needed. A unique pattern of agglutination was observed for each species over a range of 62-1000 microg/ml lectin concentrations. There were little or no variations in MLC within strains (intraspecies) of each of two species tested. In contrast, there were marked interspecies variations in MLC. Analysis of the MLC showed that the highest score of interspecies differences with 23 lectins was obtained at 125 microg/ml lectin concentration. At this concentration it was found that the pattern of agglutinations with only two lectins was sufficient to differentiate mycobacterium species from each other. Because the bacteria-lectin interaction is adaptable to various methods of visualization, our findings may set the stage for developing a rapid and reliable tool to differentiate mycobacterium species.  相似文献   

17.
A new type of cereal lectin from leaves of couch grass (Agropyrum repens)   总被引:1,自引:0,他引:1  
Extracts from couch grass (Agropyrum repens) leaves contain relatively high lectin concentrations. Preliminary experiments with crude extracts indicated that the leaf lectin differs from the embryo lectin of the same species and other Gramineae embryo lectins with respect to its sugar and blood group specificity, and serological properties. A comparison of the biochemical, physicochemical and biological properties of purified lectins from couch grass leaves and embryos, and wheat germ agglutinin revealed that the leaf lectin has the same molecular structure as the embryo lectins. It is a dimer composed of two identical subunits, which, however, are slightly larger than embryo lectin subunits. Structural differences between both couch grass lectins were further inferred from in vitro subunit exchange experiments and serological analyses. Whereas the embryo lectin readily forms heterodimers with embryo lectins from other cereal species and also is serologically indistinguishable from them, the leaf lectin does not exchange subunits with the same embryo lectins and is serologically different. In addition, couch grass leaf lectin exhibits specificity for N-acetylgalactosamine and agglutinates preferentially blood-group-A erythrocytes whereas the embryo lectin is not inhibited by N-acetylgalactosamine and exhibits no blood-group specificity. It was observed also that the lectin content of couch grass leaves varies enormously during the seasons.  相似文献   

18.
Lectins are carbohydrate binding proteins that are involved in many recognition events at molecular and cellular levels. Lectin-oligosaccharide interactions are generally considered to be of weak affinity, however some mushroom lectins have unusually high binding affinity towards oligosaccharides with K (d) values in the micromolar range. This would make mushroom lectins ideal candidates to study protein-carbohydrate interactions. In the present study we investigated the properties of a recombinant form of the mushroom lectin Aleuria aurantia (AAL). AAL is a fucose-binding lectin composed of two identical 312-amino acid subunits. Each subunit contains five binding sites for fucose. We found that one of the binding sites in rAAL had unusually high affinities towards fucose and fucose-containing oligosaccharides with K (d) values in the nanomolar range. This site could bind to oligosaccharides with fucose linked alpha1-2, alpha1-3 or alpha1-4, but in contrast to the other binding sites in AAL it could not bind oligosaccharides with alpha1-6 linked fucose. This binding site is not detected in native AAL (nAAL) one possible explanation may be that this site is blocked with free fucose in nAAL. Recombinant AAL was produced in E. coli as a His-tagged protein, and purified in a one-step procedure. The resulting protein was analyzed by electrophoresis, enzyme-linked lectin assay and circular dichroism spectroscopy, and compared to nAAL. Binding properties were measured using tryptophan fluorescence and surface plasmon resonance. Removal of the His-tag did not alter the binding properties of recombinant AAL in the enzyme-linked lectin assay. Our study forms a basis for understanding the AAL-oligosaccharide interaction and for using molecular techniques to design lectins with novel specificities and high binding affinities towards oligosaccharides.  相似文献   

19.
Gupta RK  Pande AH  Gulla KC  Gabius HJ  Hajela K 《FEBS letters》2006,580(6):1691-1695
Interaction of lectins with cell surface determinants may alter membrane properties. Using trypsinized rabbit erythrocytes as model we tested the capacity of an endogenous lectin in this respect. Galectin-1 is a member of an adhesion/growth-regulatory family known to interact for example with ganglioside GM(1) and also the hydrophobic tail of oncogenic H-Ras. Assays on membrane fluidity and osmofragility detect galectin-1's capacity to increase the parameters. Moreover, it increases susceptibility of erythrocytes to radical damage. These observations indicate the potential of this endogenous lectin to affect membrane properties beyond the immediate interaction with cell surface epitopes.  相似文献   

20.
Using neoglycoproteins, lectine that reconize different sugars, including N-acetylglucosamine residues, were previously detected in animal cell nuclei. We report herein the isolation of two N-acetylglucosamine-binding protein from HL60 cell nuclei:(i) a 22 kDa polypeptide (CBP22) with an isoelectric point of 4.5 was isolated for the first time and (ii) a 70 kDa polypeptide point of 7.8. This latter protein corresponds to the glucose-binding protein (CBP70) previously isolated, based on the following similsrties:(i) they have the same molecular mass, (ii)they have the same isoelectric point, (iii)they are recognized by antibodies raised against CBP70, and (iv) both are lectins from the C group of Drickamer's classsification. CBP70 appeared to recognized glucose and n-acetylglucosamine; howeve, its affinity for N-acetylglucosamine was found to be twice that for glucose. The presence in the nucleus of two nuclear N-acetylglucosamine-binding protein and their potential ligands, such as O-N-acetylglucosamine glycoproteins, strongly argues for possible intranuclear glycoprotein-lectine interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号