首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Until recently, there was no consensus regarding the phylogenetic relationships of the Neotropical orchid genera Scuticaria Lindl. and Dichaea Lindl. However, recent evidence derived from both gross morphological and molecular studies supports the inclusion of Scuticaria and Dichaea in sub-tribes Maxillariinae and Zygopetalinae, respectively. The present paper describes the labellar micromorphology of both genera and seeks to establish whether labellar characters support the assignment of Scuticaria and Dichaea to these sub-tribes.

Methods

The labella of four species of Scuticaria and 14 species of Dichaea were examined using light microscopy and scanning electron microscopy, and their micromorphology was compared with that of representative species of Maxillariinae sensu lato and Zygopetalinae (Huntleya clade).

Key Results and Conclusions

In most specimens of Scuticaria examined, the papillose labella bear uniseriate, multicellular, unbranched trichomes. However, in S. steelii (Lindl.) Lindl., branched hairs may also be present and some trichomes may fragment and form pseudopollen. Multicellular, leaf-like scales were also present in one species of Scuticaria. Similar, unbranched hairs are present in certain species of Maxillaria Ruiz & Pav. (Maxillariinae sensu stricto) and Chaubardia Rchb.f. (Huntleya clade). As yet, moniliform, pseudopollen-forming hairs have not been observed for Zygopetalinae, but their presence in Scuticaria steelii, Maxillaria and Heterotaxis Lindl. supports the placing of Scuticaria in Maxillariinae. As other genera are sampled, the presence of branched hairs, hitherto unknown for Maxillariinae sensu lato, may prove to be a useful character in taxonomy and phylogenetic studies. Euglossophily occurs in Dichaea, as well as Chondrorhyncha Lindl. and Pescatorea Rchb.f. (Huntleya clade), and all three genera tend to lack distinctive labellar features. Instead, lip micromorphology is relatively simple and glabrous or papillose. However, two of the Dichaea species examined bear unicellular, labellar trichomes very similar to those found in Bifrenaria Lindl. (pollinated by both euglossine bees and Bombus spp.), and this feature may have arisen by convergence in response to similar pollination pressures.Key words: Bifrenaria, Bifrenaria clade, Chaubardia, Chondrorhyncha, Dichaea, Dichaeinae, Heterotaxis, Huntleya clade, Huntleyinae, labellum, Maxillaria, Maxillariinae, papillae, Pescatorea, scales, Scuticaria, trichomes, Zygopetalinae  相似文献   

2.
3.
BACKGROUND AND AIMS: The two closely related subtribes Bifrenariinae Dressler and Maxillariinae Benth. are easily distinguished on morphological grounds. Recently, however, molecular techniques have supported the inclusion of Bifrenariinae within a more broadly defined Maxillariinae. The present paper describes the diverse labellar micromorphology found amongst representatives of Bifrenariinae (Bifrenaria Lindl., Rudolfiella Hoehne, Teuscheria Garay and Xylobium Lindl.) and compares it with that found in Maxillaria Pabst & Dungs and Mormolyca Fenzl (Maxillariinae). METHODS: The labella of 35 specimens representing 22 species of Bifrenariinae were examined by means of light microscopy and scanning electron microscopy and their micromorphology compared with that of Maxillaria sensu stricto and Mormolyca spp. The labellar epidermis of representatives of Bifrenaria, Xylobium and Mormolyca was tested for protein, starch and lipids in order to ascertain whether this tissue is involved in the rewarding of pollinators. KEY RESULTS AND CONCLUSIONS: The labella of Bifrenaria spp. and Mormolyca spp. are densely pubescent but those of Xylobium, Teuscheria and Rudolfiella are generally papillose. However, whereas the trichomes of Bifrenaria and Mormolyca are unicellular, those found in the other three genera are multicellular. Hitherto, no unicellular trichomes have been described for Maxillaria, although the labella of a number of species secrete a viscid substance or bear moniliform, pseudopollen-producing hairs. Moniliform hairs and secretory material also occur in certain species of Xylobium and Teuscheria and these genera, together with Maxillaria, are thought to be pollinated by stingless bees (Meliponini). Differences in the labellar micromorphology of Bifrenaria and Mormolyca are perhaps related to Euglossine- and/ or bumble bee-mediated pollination and pseudocopulation, respectively. Although Xylobium and Teuscheria share a number of labellar features with Maxillaria sensu stricto, this does not necessarily reflect taxonomic relationships but may be indicative of convergence in response to similar pollinator pressures.  相似文献   

4.

Background and Aims

Molecular evidence indicates that the Neotropical sub-tribe Zygopetalinae is sister to Maxillariinae. Most members of the latter sub-tribe have deceit pollination strategies, but some species produce rewards such as nectar, pseudopollen, resin and wax, and are pollinated by a range of pollinators that include stingless bees (Meliponini), wasps and hummingbirds. By contrast, relatively little is known about the pollination of Zygopetalinae species. However, some are pollinated by fragrance-gathering, male euglossine bees or employ nectar deceit strategies. The aim of this study is to describe the labellar micromorphology of Zygopetalinae and to compare it with that of Maxillariinae sensu lato (s.l.) as part of an ongoing project to record the range of labellar characters found within the tribe Maxillarieae, and to assess whether these characters represent synapomorphies or homoplasies resulting from similar pollination pressures.

Methods

The labella of 31 species of Zygopetalinae, including Cryptarrhena R. Br. and representatives of the Zygopetalum, Huntleya and Warrea clades, were examined using light microscopy and scanning electron microscopy, and the range of labellar characters was recorded. These characters were subsequently compared with those of Maxillariinae s.l. which formed the subject of our previous investigations.

Key Results and Conclusions

The labellar micromorphology of Zygopetalinae is less diverse than that of Maxillariinae and does not reflect the currently accepted phylogeny of the former sub-tribe based on molecular studies. Instead, the relative uniformity in labellar micromorphology of Zygopetalinae is probably due to homoplasies resulting from similar pollinator pressures. Labellar trichomes are relatively uncommon in Zygopetalinae, but occur in certain members of both the Zygopetalum and Huntleya clades. Trichomes are unbranched, uniseriate and multicellular with rounded apices, or unbranched and unicellular, with tapering, pointed and flexuose apices. Hitherto, unicellular trichomes of this kind have been observed only for euglossophilous orchid taxa, and the adoption of a relatively limited range of pollination strategies by Zygopetalinae may have resulted in reduced investment in micromorphological labellar characters.  相似文献   

5.
Nectar spurs have an important role in floral evolution and plant–pollinator coadaptation. The flowers of some species possess spurs curving into a circle. However, it is unclear whether spur circle diameter is under direct selection pressure from different sources, such as pollinators and nectar robbers. In this study, we quantified selection on some floral traits, such as spur circle diameter in Impatiens oxyanthera (Balsaminaceae) using phenotypic selection analysis and compared the relative importance of pollinators and nectar robbers as selective agents using mediation analysis. The study showed that pollinators caused significant selection on corolla length, spur curvature and spur circle diameter while nectar robbers only imposed strong selection on spur circle diameter. Pollinators favored flowers with large corolla, curly spurs and large spur circle while nectar robbers preferred flowers with small spur circle. More pollinator visits resulted in higher female reproductive success, while robbery reduced female fitness. Conflicting selection on spur traits from pollinators and nectar robbers was not found. Mediation analysis showed that selection on floral traits through nectar robbing was stronger than selection through pollination. The results suggested that pollinators and nectar robbers jointly mediated the directional selection for large spur circle, and nectar robbers caused stronger selection than pollinators on floral traits.  相似文献   

6.
Phylogenetic analysis indicates that Lycastinae should be incorporated into a more broadly defined Maxillariinae. This is supported by several anatomical features, including the presence of sunken, glandular trichomes in both Lycastinae and Maxillariinae s.s. Until recently, these were known only from vegetative organs, but have since been reported from flowers of Maxillaria dichroma. One character currently used to distinguish between Lycaste and Sudamerlycaste is the distribution of floral trichomes. In this article, we test the reliability of this character, describe the floral micromorphology of Lycaste and Sudamerlycaste and investigate whether their flowers bear sunken hairs. Their floral micromorphology is compared with that of other genera currently assigned to Maxillariinae s.l. Flowers of Lycaste and Sudamerlycaste bear conical or obpyriform papillae and unbranched and unequally branched multicellular trichomes. Contrary to previous reports that trichomes are confined to the column in Sudamerlycaste, they also occur in the tepal axils. Labellar trichomes, although often present in Lycaste, are lacking in Sudamerlycaste. In Lycaste sections Lycaste and Aromaticae, floral trichomes tend to be unbranched, whereas section Intermediae has both unbranched and branched hairs. Branched hairs are more common in Sudamerlycaste. Some hairs are tracheoidal, pitted and lignified. These mainly occur in section Lycaste and, to a degree, in section Intermediae, but are absent from section Aromaticae and most species of Sudamerlycaste. Branched column hairs, present in Sudamerlycaste, are absent from all sections of Lycaste, and tracheoidal column hairs occur only in Sudamerlycaste. Sunken floral hairs are absent from both genera. Trichome structure and distribution may prove useful in distinguishing between these taxa and in elucidating the intergeneric relationships of Maxillariinae s.l.© 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 409–421.  相似文献   

7.
The floral nectary of Tropaeolun majus L. was studied with theaid of a microscope with transmitting and incident light, atransmission electron microscope and a scanning electron microscope.The Gomori method was used for the localization of acid phosphatase.As a result of this investigation the previously accepted viewthat nectar in this plant is secreted only from the hair tipsof the inner epidermis of the calyx spur was found to be inaccurate.The present studies showed that the parenchyma cells locatedbetween the inner epidermis and the region of the vascular bundlesof the lowest third of the spur, are the main nectar-secretingelements of the nectary. These secretory cells release the nectarsolution into intercellular spaces leading to modified stomata,through which it is exuded into the spur cavity. The modifiedstomata occur in the lowest portion of the spur only. At thestage of secretion small droplets of liquid of high viscositywere observed on the epidermal hairs. These droplets presumablycontain polysaccharides and a certain amount of sugar.  相似文献   

8.
Effects of fire frequency on oak litter decomposition and nitrogen dynamics   总被引:1,自引:0,他引:1  
Young HJ 《Oecologia》2008,158(3):535-543
Rapid speciation within some plant families has been attributed to the evolution of floral spurs and to the effect of spur length on plant reproductive success. The flowers of Impatiens capensis (jewelweed) possess a long, curved spur in which nectar is produced and stored. Spur length and curvature varies among plants within one population. Here I document that spur shape is variable in natural populations, variation within plants is less than variation among plants, and spur shape is correlated with components of female and male reproductive success. The apparent natural selection is weakly directional in 1 of 2 years, with greatest seed production and pollen removal occurring in flowers with the greatest spur curvature. Bee pollinator visit length is longest at flowers with highly curved spurs, and they leave less nectar in these spurs than in flowers with straighter spurs. Spur angle evolution may be limited, at least in part, by opposing selection by nectar-robbers who prefer to visit flowers with greater spur curvature. Other factors that might contribute to the maintenance of spur angle variation are temporal variation in the strength of selection and potential genetic correlations of spur shape with other traits under selection.  相似文献   

9.

Background and Aims

Floral elaiophores, although widespread amongst orchids, have not previously been described for Maxillariinae sensu lato. Here, two claims that epithelial, floral elaiophores occur in the genus Rudolfiella Hoehne (Bifrenaria clade) are investigated. Presumed elaiophores were compared with those of Oncidiinae Benth. and the floral, resin-secreting tissues of Rhetinantha M.A. Blanco and Heterotaxis Lindl., both genera formerly assigned to Maxillaria Ruiz & Pav. (Maxillariinae sensu stricto).

Methods

Putative, floral elaiophore tissue of Rudolfiella picta (Schltr.) Hoehne and floral elaiophores of Oncidium ornithorhynchum H.B.K. were examined by means of light microscopy, histochemistry, scanning electron microscopy and transmission electron microscopy.

Key Results and Conclusions

Floral, epithelial elaiophores are present in Rudolfiella picta, indicating, for the first time, that oil secretion occurs amongst members of the Bifrenaria clade (Maxillariinae sensu lato). However, whereas the elaiophore of R. picta is borne upon the labellar callus, the elaiophores of O. ornithorhynchum occur on the lateral lobes of the labellum. In both species, the elaiophore comprises a single layer of palisade secretory cells and parenchymatous, subsecretory tissue. Cell wall cavities are absent from both and there is no evidence of cuticular distension in response to oil accumulation between the outer tangential wall and the overlying cuticle in R. picta. Distension of the cuticle, however, occurs in O. ornithorhynchum. Secretory cells of R. picta contain characteristic, spherical or oval plastids with abundant plastoglobuli and these more closely resemble plastids found in labellar, secretory cells of representatives of Rhetinantha (formerly Maxillaria acuminata Lindl. alliance) than elaiophore plastids of Oncidiinae. In Rhetinantha, such plastids are involved in the synthesis of resin-like material or wax. Despite these differences, the elaiophore anatomy of both R. picta (Bifrenaria clade) and O. ornithorhynchum (Oncidiinae) fundamentally resembles that of several representatives of Oncidiinae. These, in their possession of palisade secretory cells, in turn, resemble the floral elaiophores of certain members of Malpighiaceae, indicating that convergence has occurred here in response to similar pollination pressures.Key words: Bifrenaria clade, elaiophore, floral oil, Heterotaxis, Maxillariinae, Oncidiinae, Oncidium ornithorhynchum, Rhetinantha, Rudolfiella picta, secretion  相似文献   

10.
The ultrastructure of the nectary spur of Limodorum abortivum(L) Sw. was examined before and after anthesis. In cross sectionthe nectary spur shows an internal epidermal layer of thin-walledcells bordering the secretory cavity and 10–12 layersof parenchyma cells. The ultrastructure of the secretory cellssuggests the involvement of ER, Golgi and plastids in nectarsecretion. The nectar accumulated in the sub-cuticular spaceis released into the nectariferous cavity by rupture of theouter layer of the cuticle. Limodorum abortivum (L) Sw., Orchidaceae, nectary spur, nectar secretion, ultrastructure, anthesis, endoplasmic reticulum, dictyosomes, plastids  相似文献   

11.

Background and Aims

To date, the structure of the nectary spur of Aeridinae has not been studied in detail, and data relating to the nectaries of ornithophilous orchids remain scarce. The present paper compares the structural organization of the floral nectary in a range of Aeridinae species, including both entomophilous and ornithophilous taxa.

Methods

Nectary spurs of Ascocentrum ampullaceum (Roxb.) Schltr. var. aurantiacum Pradhan, A. curvifolium (Lindl.) Schltr., A. garayi Christenson, Papilionanthe vandarum (Rchb.f.) Garay, Schoenorchis gemmata (Lindl.) J.J. Sm., Sedirea japonica (Rchb.f.) Garay & H.R. Sweet and Stereochilus dalatensis (Guillaumin) Garay were examined by means of light microscopy, scanning electron microscopy and transmission electron microscopy.

Key Results and Conclusions

The diverse anatomy of the nectary is described for a range of Aeridinae species. All species of Ascocentrum investigated displayed features characteristic of ornithophilous taxa. They have weakly zygomorphic, scentless, red or orange flowers, display diurnal anthesis, possess cryptic anther caps and produce nectar that is secluded in a relatively massive nectary spur. Unicellular, secretory hairs line the lumen at the middle part of the spur. Generally, however, with the exception of Papilionanthe vandarum, the nectary spurs of all entomophilous species studied here (Schoenorchis gemmata, Sedirea japonica, Stereochilus dalatensis) lack secretory trichomes. Moreover, collenchymatous secretory tissue, present only in the nectary spur of Asiatic Ascocentrum species, closely resembles that found in nectaries of certain Neotropical species that are hummingbird-pollinated and assigned to subtribes Maxillariinae Benth., Laeliinae Benth. and Oncidiinae Benth. This similarity in anatomical organization of the nectary, regardless of geographical distribution and phylogeny, indicates convergence.  相似文献   

12.
The urn-shaped flowers of Acrotriche serrulata R.Br. are unusualin two features: the mode of pollen presentation, and the corollatube which is filled with nectar at maturity, submerging thestyle and stigma. At the end of the corolla tube, the petallobes bear conspicuous subterminal hairs that usually containclumps of pollen embedded in viscous pollencoat materials. Developmentalstudies show that at anthesis, pollen from the dehisced anthersadheres to the petal hairs. When the corolla lobes reflex, thepollen is presented on the newly exposed hairs. The mature corollatube either abscises or may be removed by nectar-seeking non-flyingmarsupials, putative agents of pollination. Acrotriche serrulata, Epacridaceae, pollen presentation, pollination, geoflory, floral structure, nectar, stigma  相似文献   

13.
Morphological and ITS sequence divergence were assessed between the two presently recognized taxa of the endemic genusCuminia (Lamiaceae), on Masatierra of the Juan Fernandez Islands. Morphological studies were based on leaf morphology of 51 individuals. Individuals ofC. fernandezia have narrow and lanceolate leaves with cuneate to acute bases and apices, whereas individuals ofC. eriantha have broadly ovate leaves with rounded bases and acute to obtuse apices. The two taxa can also be distinguished by the presence of pubescence.Cuminia eriantha has hairs on the leaves, young stems, floral peduncles, calyx, and corolla. Alternatively,C. fernandezia is glabrous except for tuft hairs on the nodes, and hairs on calyx teeth and corolla tubes. The ITS 1 and 2 regions of the five plants ofCuminia sequenced are a total of 451 bp long. All plants have identical ITS-1 but pubescent and glabrous plants are consistently different in ITS-2 sequence, revealing 1.3% total sequence divergence between the species. Both morphological and molecular data support the taxonomic recognition of two taxa, and the small but consistent differences appear to justify species status for the two entities. The pubescent populations representC. eriantha and the glabrous ones areC. fernandezia. It is hypothesized that the species diverged from a common ancestral immigrant to the islands, when Masatierra was much larger and more ecologically diverse than it now is. The two taxa seem to maintain their identities with no evidence of hybridization, even though they often grow in close proximity to one other on the island. Each population consists only of glabrous or pubescent plants, with no mixed population detected.  相似文献   

14.
Floral spurs are regarded as features affecting pollinator behaviour. Anacamptis pyramidalis is regarded as a deceitful, non-rewarding orchid species. In the form fumeauxiana, additional spurs occur on the lateral sepals. In this study we analyse micromorphological and ultrastructural floral features and suggest the mechanism of deception in A. pyramidalis and A. pyramidalis f. fumeauxiana. In f. fumeauxiana, the adaxial surface of the lip, the lip calli, the tips of the lateral sepals, the abaxial and adaxial epidermises of the lip spur, and the lateral sepal spur have a secretory function. Numerous stomata were observed on the abaxial surfaces of spurs and sepals. The characteristic features of the ultrastructure of osmophore cells were noted: dense cytoplasm with numerous profiles of ER, mitochondria, plastids with plastoglobuli and tubular structures, a large nucleus, lipid droplets, and vesicles fusing with the plasmalemma. The similarity of the floral morphology and anatomy, the flowering period, and pollinators of A. pyramidalis, A. pyramidalis f. fumeauxiana and Gymnadenia conopsea suggest a possible food-deceptive mechanism—imitation of nectar presence produced in the spurs of Gymnadenia.  相似文献   

15.
In Utricularia, the flower spur is a nectary and in this organ, nectar is produced and stored. This study aimed to examine the structure of the nectary trichomes in four Utricularia species (Utricularia vulgaris L., U. australis R.Br., U. bremii Heer and U. foliosa L.) from the generic section Utricularia. We have investigated whether species with different spur morphology had similar spur anatomy and nectary trichome structure. In Utricularia flowers, nectar is produced by spur capitate trichomes (sessile or stalked). Our results showed that regardless of the various spur morphology, trichomes have similar architecture and ultrastructure. Head cells of these trichomes are transfer cells with an eccrine nectar secretion. Examined species differed in the micromorphology of papillae in spurs. The fly Eristalis tenax was found to be a pollinator of U. vulgaris. Small Halictidae bees seem to be pollinators of U. foliosa.  相似文献   

16.
Glabrous and pubescent foliar phenotypes ofMetrosideros polymorphaoccursympatrically on Mauna Loa, Hawaii. This coexistence has beensuggested, by earlier workers, to represent distinct genotypes,each of which produces progenies with a homogenous foliar phenotype.We re-examined the question of to what extent siblings fromthe same parents varied in phenotype when grown under the samecommon-garden conditions. Seeds were collected from parentaltrees in a matrix of two substrate ages (114–140 yrvs.approx.1200–3200 yr old) at five elevations from lowland (100m) to treeline (2470 m) on Mauna Loa. Seeds were sown and grownunder identical environmental conditions at 1200 m. In fieldparental populations, two forms converged into pubescent formswith decreasing rainfall (<2000 mm) on both substrates, andinto glabrous forms with increasing soil age where rainfallwas ample. The 4-yr old seedlings from pubescent parents invariablyexpressed both glabrous and pubescent phenotypes for all altitudesand for both substrate ages except for the young 1980-m site.The seedlings from glabrous parents tended to express only theglabrous phenotypes except for the young 1280-m site. Overall,all populations on the young lava flow (glabrous and pubescentindividuals combined if coexisting) could produce progeniesof both phenotypes except at 1980 m. Cuticle thickness on theadaxial lamina surface was positively correlated with the magnitudeof pubescence (P=0.05) among siblings from the same parents,ranging from a mean cuticle thickness of 6.0 µm for glabrousto 15.7 µm for the most pubescent individuals. Greatermagnitudes of pubescence were associated with more negativeosmotic potentials at turgor loss point, and with greater maximumCO2assimilation rates at the point of light saturation. Thisphysiological and anatomical polymorphism, together with spatiallyand temporally varying selective forces, appears to result inelevationally and successionally patternedM. polymorphapopulationson the wet slope of Mauna Loa. Common-garden experiment; cuticle; foliar pubescence; Hawaii; Metrosideros polymorpha,natural selection; photosynthesis; polymorphism; primary succession; water potential  相似文献   

17.
The African orchid flora has a high proportion of species with long-spurred white flowers. Few data exist to test the prediction that this floral syndrome pattern reflects an important role for hawkmoth pollination in the evolution and ecology of these orchids. The pollination biology of five aerangoid orchid species (Rangaeris amaniensis, Aerangis brachycarpa, A. confusa, A. thomsonii, and A. kotschyana) was investigated in Kenya. Four of these have long spurs (>10 cm) and were pollinated by Agrius convolvuli and Coelonia fulvinotata. Aerangis confusa, which has relatively short spurs (ca. 4 cm), was pollinated by the short-tongued hawkmoths Hippotion celerio and Daphnis nerii. Nectar frequently filled the entire spur in some of the study species, even at anthesis. Sugar concentration of the nectar of four species was found to vary from ca. 1% at the mouth of the spur to 20% at the tip. Gradients were expressed more strongly in species with long, straight spurs. Species with spirally twisted spurs showed both steep and shallow nectar gradients. These gradients, previously unknown in plants, may function as a "sugar trail," enticing long-tongued hawkmoths to probe deeply into spurs without incurring the cost of filling an entire spur with concentrated nectar. In addition, the most concentrated nectar is kept out of reach of short-tongued pollinators.  相似文献   

18.
Johanne Brunet 《Annals of botany》2009,103(9):1567-1578

Background and Aims

Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In the present study, the variation in pollinator abundance over time and space was examined in populations of the Rocky Mountain columbine. The variation in three floral traits is described and correlations between pollinator type, functional pollinator groups or altitude and floral traits are examined.

Methods

Pollinator observations took place in six Aquilegia coerulea populations over 1–4 years and spur length, flower colour and sepal length were measured in 12 populations. Pollinator abundance, measured as visits per flower per hour, was compared among populations and years. Pollinators were grouped into two functional groups: pollen or nectar collectors. The following associations were examined: annual presence of hawkmoths and whiter flowers with longer spurs; the presence of Sphinx vashti and longer spurs; and higher altitudes and whiter flowers. The study looked at whether an increase in the proportion of hawkmoths in a population was associated with whiter and larger flowers with longer spurs.

Key Results

The abundance of different pollinator groups varied over time and space. Floral traits varied among populations. Higher altitude was correlated with bluer flowers. Whiter flowers were associated with the annual presence of hawkmoths. Populations visited by Sphinx vashti had longer spurs than populations visited only by Hyles lineata. Populations with greater percentage of nectar-collecting pollinators did not have whiter, larger flowers with longer spurs.

Conclusions

Despite the large variation in pollinator abundance over time and space, one species of bumble-bee or hawkmoth tended to predominate in each population each year. Future studies of Aquilegia coerulea should examine the specific influences of pollinators and the environment on flower colour and of hawkmoth species on spur length.Key words: Aquilegia coerulea, columbine, pollinator abundance, bumble-bee, hawkmoth, flower colour, spur length, functional pollinator group, altitude, floral trait  相似文献   

19.
The acquisition of floral nectar spurs is correlated with increased species diversity across multiple clades. We tested whether variation in nectar spurs influences reproductive isolation and, thus, can potentially promote species diversity using two species of Aquilegia, Aquilegia formosa and Aquilegia pubescens, which form narrow hybrid zones. Floral visitors strongly discriminated between the two species both in natural populations and at mixed-species arrays of individual flowers. Bees and hummingbirds visited flowers of A. formosa at a much greater rate than flowers of A. pubescens. Hawkmoths, however, nearly exclusively visited flowers of A. pubescens. We found that altering the orientation of A. pubescens flowers from upright to pendent, like the flowers of A. formosa, reduced hawkmoth visitation by an order of magnitude. In contrast, shortening the length of the nectar spurs of A. pubescens flowers to a length similar to A. formosa flowers did not affect hawkmoth visitation. However, pollen removal was significantly reduced in flowers with shortened nectar spurs. These data indicate that floral traits promote floral isolation between these species and that specific floral traits affect floral isolation via ethological isolation while others affect floral isolation via mechanical isolation.  相似文献   

20.
利用光学显微镜和扫描电子显微镜,观察了新疆委陵菜属5组不同花柱组10种4变种植物叶表皮的微形态特征,测量统计叶表皮毛的类型、表皮细胞的形状及大小、气孔器的分布及类型、气孔的形状、大小、密度及指数、气孔外拱盖形态及其纹饰等指标。结果显示:新疆委陵菜属10种4变种植物叶的下表皮均有气孔器的分布,形状为长椭圆形、椭圆形、宽椭圆形和近圆形;气孔器的类型多为无规则四细胞型、无规则型、围绕型和辐射型;表皮毛的类型为针状毛、带状柔毛和腺毛;表皮细胞的形状分为不规则形和多边形2种类型。研究表明,新疆委陵菜属植物表皮毛特征、叶片表皮细胞的形状、垂周壁式样、气孔器的形状类型、气孔密度指数及外围蜡质纹饰等存在差异,对属以下等级的划分有重要价值,可作为物种分类及鉴别的依据,同时也为本属一些分类群间的系统关系的探讨提供佐证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号