首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred and fifty clinical isolates of Mycobacterium tuberculosis were tested for susceptibility to pyrazinamide using the fully automated Bactec MGIT 960 system and the radiometric Bactec 460TB system. The overall concordance rate between MGIT 960 and radiometric system was 100% and the mean turnaround times to report the susceptibility test results were almost identical (6.37 and 6.8 days, respectively).  相似文献   

2.
The BACTEC radiometric method of drug susceptibility testing of Mycobacterium tuberculosis is a reliable and rapid diagnostic tool in clinical mycobacteriology. However, large scale comparative studies have also shown that the level of agreement with standard methodology was less satisfactory with strains resistant to ethambutol and streptomycin than with strains resistant to rifampin and to isoniazid. Since disagreement with drug resistance strains is far more frequent than with drug susceptible strains, it was felt that only the comparison of a large number of resistant strains would be needed to further refine this new technique. The analysis of BACTEC-derived data for isoniazid and rifampin shows that the level of agreement with conventional methodology falls well within accepted limits. Statistical analysis of the radiometric versus conventional comparisons shows no significant differences between the two methods in the case of isoniazid, rifampin, and ethambutol (3 mg/L). Streptomycin and two other ethambutol concentrations tested showed lower levels of agreement and significant statistical differences with conventional methodology.  相似文献   

3.
In order to evaluate the Organon Teknika MB/BacT system used for testing indirect susceptibility to the alternative drugs ofloxacin (OFLO), amikacin (AMI), and rifabutin (RIF), and to the usual drugs of standard treatment regimes such as rifampin (RMP), isoniazid (INH), pyrazinamide (PZA), streptomycin (SM), ethambutol (EMB), and ethionamide (ETH), cultures of clinical specimens from 117 patients with pulmonary tuberculosis under multidrug-resistant investigation, admitted sequentially for examination from 2001 to 2002, were studied. Fifty of the Mycobacterium tuberculosis cultures were inoculated into the gold-standard BACTEC 460 TB (Becton Dickinson) for studying resistance to AMI, RIF, and OFLO, and the remaining 67 were inoculated into Lowenstein Jensen (LJ) medium (the gold standard currently used in Brazil) for studying resistance to RMP, INH, PZA, SM, EMB, and ETH. We observed 100% sensitivity for AMI (80.8-100), RIF (80.8-100), and OFLO (78.1-100); and 100% specificity for AMI (85.4-100), RIF (85.4-100), and OFLO (86.7-100) compared to the BACTEC system. Comparing the results obtained in LJ we observed 100% sensitivity for RMP (80-100), followed by INH-95% (81.8-99.1), EMB-94.7% (71.9-99.7), and 100% specificity for all drugs tested except for PZA-98.3 (89.5-99.9) at 95% confidence interval. The results showed a high level of accuracy and demonstrated that the fully automated, non-radiometric MB/BacT system is indicated for routine use in susceptibility testing in public health laboratories.  相似文献   

4.

Background

Infection of livestock with bovine tuberculosis (bTB; Mycobacterium bovis) is of major economical concern in many countries; approximately 15 000 to 20 000 cattle are infected per year in Ireland. The objective of this study was to quantify the genetic variation for bTB susceptibility in Irish dairy and beef cattle.

Methods

A total of 105 914 cow, 56 904 heifer and 21 872 steer single intra-dermal comparative tuberculin test records (i.e., binary trait) collected from the years 2001 to 2010 from dairy and beef herds were included in the analysis. Only animal level data pertaining to periods of herd bTB infection were retained. Variance components for bTB were estimated using animal linear and threshold mixed models and co-variances were estimated using sire linear mixed models.

Results

Using a linear model, the heritability for susceptibility to bTB in the entire dataset was 0.11 and ranged from 0.08 (heifers in dairy herds) to 0.19 (heifers in beef herds) among the sub-populations investigated. Differences in susceptibility to bTB between breeds were clearly evident. Estimates of genetic correlations for bTB susceptibility between animal types (i.e., cows, heifers, steers) were all positive (0.10 to 0.64), yet different from one. Furthermore, genetic correlations for bTB susceptibility between environments that differed in herd prevalence of bTB ranged from 0.06 to 0.86 and were all different from one.

Conclusions

Genetic trends for bTB susceptibility observed in this study suggest a slight increase in genetic susceptibility to bTB in recent years. Since bTB is of economic importance and because all animals are routinely tested at least once annually in Ireland and some other countries, the presence of genetic variation for bTB susceptibility suggests that bTB susceptibility should be included in a national breeding program to halt possible deterioration in genetic susceptibility to bTB infection.  相似文献   

5.
Aims: The anti‐tubercular drugs are less effective because of the emergence of multi‐drug resistant (MDR) and extensively drug resistant (XDR) strains of M. tuberculosis, so plants being an alternative source of anti‐microbial compounds. The aim of this study was to investigate anti‐tuberculosis potential of the plants using Mycobacterium smegmatis as a rapid screening model for detection of anti‐mycobacterial activity and further to evaluate the active plants for anti‐tuberculosis activity against M. tuberculosis using radiometric BACTEC assay. Methods and Results: The 15 plants were screened for anti‐mycobacterial activity against M. smegmatis by the disk diffusion assay. The ethanolic extracts of Mallotus philippensis, Vitex negundo, Colebrookea oppositifolia, Rumex hastatus, Mimosa pudica, Kalanchoe integra and Flacourtia ramontchii were active against M. smegmatis in primary screening. The anti‐tuberculosis potential was identified in the leaves extracts of Mallotus philippensis by radiometric BACTEC assay. The ethanolic extract of M. philippensis showed anti‐tuberculosis activity against virulent and avirulent strains of M. tuberculosis H37Rv and M. tuberculosis H37Ra with minimum inhibitory concentration 0·25 and 0·125 mg ml?1, respectively. The inhibition in growth index values of M. tuberculosis was observed in the presence of ethyl acetate fraction at a minimum concentration of 0·05 mg ml?1. Conclusion: We found that BACTEC radiometric assay is a valuable method for detection of anti‐tuberculosis activity of the plant extracts. The results indicate that ethanolic extract and ethyl acetate fraction of M. philippensis exhibited significant anti‐mycobacterial activity against M. tuberculosis. Significance and Impact of the Study: These findings provide scientific evidence to support the traditional medicinal uses of M. philippensis and indicate a promising potential of this plant for the development of anti‐tuberculosis agent.  相似文献   

6.
7.
The accuracy of the Bactec MGIT 960 system for susceptibility testing of 177 clinical isolates of Mycobacterium tuberculosis to first line drugs (isoniazid, rifampicin, ethambutol and streptomycin) was compared with the agar reference method. The sensitivity, the ability to detect resistance, of the MGIT system was 100%, while the specificity, the ability to detect susceptibility, ranged from 98.6% to 100% for all drugs tested.  相似文献   

8.
Testing of Mycobacterium bovis BCG strain Montréal for susceptibility to four primary antituberculous drugs (isoniazid, ethambutol, streptomycin, and rifampin) and to one secondary drug (p-aminosalicylic acid) showed the strain to be susceptible to all five substances. Mycobacterium bovis strains ATCC 35735, which is isoniazid sensitive, and ATCC 35747, which is isoniazid resistant, were included in the test; with the exception of their respective susceptibility to isoniazid, both were inhibited by the other four drugs.  相似文献   

9.
The resistance system of Mycobacterium bovis (B.C.G.) to aminoglycoside-and peptide-antibiotics has been studied. The phenotype of mutants isolated from the parent B.C.G. strain by a single-step selection with an antibiotic were classified into the following three types: (1) resistant only to a low concentration (200 μg/ml) of kanamycin in Ogawa egg medium (k1R); (2) resistant to a low concentration (200 μg/ml) of viomycin and of capreomycin (2R); and (3) resistant to a high concentration (1,000 μg/ml or more) of kanamycin and low concentrations (100 to 200 μg/ml) of lividomycin and of paromomycin (KR). The mutants showing these phenotypes, k1R, 2R, and KR, were isolated from the parent strain by inoculating the strain into media containing 100 μg/ml of kanamycin, and 100 μ/g/ml of viomycin or capreomycin, and 1,000 μg/ml of kanamycin, respectively, at rates of 10?5-10?6, 10?5-10?6, and 10?6-10?7, respectively, in a total viable population of the parent strain. Unlike in the case of M. tuberculosis, no mutant could be isolated from the parent strain by use of enviomycin, lividomycin, and/or paromomycin. In contrast to the fact that quadruply resistant mutants were isolated directly from the parent H37Rv strain of M. tuberculosis, such mutants could be isolated only by two-step selections. Furthermore, the phenotypes of the quadruply resistant mutants were those showing a higher resistance or a broader spectrum than expected by the addition of phenotypes of individual mutations. In addition, it was shown that, in contrast to the fact that hextuply resistant mutants could be isolated directly from the parent strain of M. tuberculosis, such mutants were not isolated directly from the parent B.C.G. strain, but could be isolated only after pre-incubation of the strain on a medium containing Tween 80.  相似文献   

10.
Mycobacterium tuberculosis complex (MTC) comprises a group of bacteria that have a high degree of genetic similarity. Two species in this group, Mycobacterium tuberculosis and Mycobacterium bovis, are the main cause of human and bovine tuberculosis, respectively. M. bovis has a broader host range that includes humans; thus, the differentiation of mycobacterium is of great importance for epidemiological and public health considerations and to optimize treatment. The current study aimed to evaluate primers and molecular markers described in the literature to differentiate M. bovis and M. tuberculosis by PCR. Primers JB21/22, frequently cited in scientific literature, presented in our study the highest number of errors to identify M. bovis or M. tuberculosis (73 %) and primers Mb.400, designed to flank region of difference 4 (RD4), were considered the most efficient (detected all M. bovis tested and did not detect any M. tuberculosis tested). Although also designed to flank RD4, primers Mb.115 misidentified eight samples due to primer design problems. The results showed that RD4 is the ideal region to differentiate M. bovis from other bacteria classified in MTC, but primer design should be considered carefully.  相似文献   

11.
Transmission of Mycobacterium bovis from cattle to humans has been reported and can cause tuberculosis (Tb) and a problem in certain risk populations. Therefore, knowledge of resistance of M. bovis towards antibiotics used for therapy of human Tb could help avoiding cure delay and treatment cost increase when dealing with drug resistant organisms. We therefore evaluated the susceptibility of M. bovis isolates towards streptomycin, isoniazide, rifampicin, ethambutol, and ethionamide, the first line antibiotics for human Tb. Therefore, 185 clinical samples from cattle with clinical signs of tuberculosis were processed and submitted to culturing and bacterial isolates to identification and drug susceptibility testing using the proportion method. Among 89 mycobacterial strains, 65 were identified as M. bovis and none were resistant to any of the antibiotics used. Confirmation of present results by future studies, enrolling a large number of isolates and designed to properly represent Brazilian regions, may favor the idea of using isoniazide preventive therapy as part of a Tb control strategy in special situations. Also, nucleic acids from bacterial isolates were submitted to rifoligotyping, a recently described reverse hybridization assay for detection of mutations causing resistance towards rifampicin. Concordance between the conventional and the molecular test was 100%, demonstrating the use of such methodology for rapid evaluation of drug susceptibility in M. bovis.  相似文献   

12.

Background

The purpose of this study was to evaluate the performance of the BACTEC MGIT 960 (M960) system compared with the proportion method (PM) on Löwenstein-Jensen (L-J) medium in a peripheral laboratory in China for the testing of Mycobacterium tuberculosis (MTB) susceptibility to streptomycin (SM), isoniazid (INH) rifampicin (RIF) and ethambutol (EMB) a combination known as SIRE.

Methods

The susceptibility of 205 clinical isolates of MTB to SM, INH, RIF and EMB was performed with the M960 system. The drugs were tested at the following concentrations: 1.0 µg/ml for SM, 0.1 µg/ml for INH, 1.0 µg/ml for RIF, and 5.0 µg/ml for EMB. The results were compared with those obtained by the L-J PM. The L-J PM at an arbiter site was used to resolve any discordant results.

Results

The overall consistency was 96.6% and concordance values were 95.6% for SM, 97.6% for INH, 98.0% for RIF and 95.1% for EMB. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the M960 system for PM (the standard method) was 95.6%, 97.3%, 96.2% and 96.9% respectively, and the sensitivity were 93.3% for SM, 96.9% for INH, 97.4% for RIF and 94.6% for EMB, the specificity were 96.9% for SM, 98.2% for INH, 98.4% for RIF and 95.5% for EMB, the PPV were 94.6% for SM, 97.9% for INH, 97.4% for RIF and 94.6% for EMB, the NPV were 96.2% for SM, 97.3% for INH, 98.4% for RIF and 95.5% for EMB. The turnaround time with the M960 system (median 8.0 days, ranged from 5 to 14 days) was significantly shorter than that with the PM (28 days or 42 days).

Conclusion

There was a substantial degree of agreement between the two methods. The M960 system was a reliable and rapid method for SIRE susceptibility testing of tuberculosis in China.  相似文献   

13.
14.
15.
The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB.  相似文献   

16.
17.
Coenzyme Q1 is herein proposed as the best catalyst among coenzymes Q and vitamins K for quinone-catalyzed luminol chemiluminescent assays applied to rapid determination of viability or rapid antimicrobial susceptibility tests of Mycobacterium bovis. Luminol chemiluminescence intensity (LCI) was determined 10 min after the incubation of M. bovis with coenzyme Q1, and was proportional to CFU (colony-forming unit)/ml in the range of 9,000 to 2,250,000. LCI depended on the the production of the superoxide anion (O2-) rather than H2O2 during a 10-min incubation of M. bovis with coenzyme Q1, as superoxide dismutase reduced LCI more effectively than catalase. The minimal inhibitory concentrations (MICs) of 10 kinds of antituberculous agents estimated on the basis of decrease in LCI after one or two days' cultivation were in good agreement with MICs determined by turbidity analysis, which requires upwards of 1 week to complete.  相似文献   

18.
Isonicotinic acid hydrazide (Isoniazid, INH) is one of the major drugs worldwide used in the chemotherapy of tuberculosis. Many investigators have emphasized that INH activation is associated with mycobacterial catalase-peroxidase (katG). However, INH activation mechanism is not completely understood. In this study, katG of M. bovis BCG was separated and purified into two katGs, katG I (named as relatively higher molecular weight than katG II) and katG II, indicating that there is some difference in protein structure between two katGs. The molecular weight of the enzymes of katG I and katG II was estimated to be approximately 150,000 Da by gel filtration, and its subunit was 75,000 Da as determined by SDS-PAGE, indicating that purified enzyme was composed of two identical subunits. The specific activity of the purified enzyme katG I was 991.1 (units/mg). The enzymes were then investigated in INH activation by using gas chromatography mass spectrometry (GC-MS). The analysis of GC-MS showed that the katG I from M. bovis BCG directly converted INH (Mr, 137) to isonicotinamide (Mr, 122), not to isonicotinic acid (Mr, 123), in the presence or absence of H2O2. Therefore, this is the first report that katG I, one of two katGs with almost same molecular weight existed in M. bovis BCG, converts INH to isonicotinamide and this study may give us important new light on the activation mechanism of INH by KatG between M. bovis BCG and M. tuberculosis.  相似文献   

19.
20.
Role of leukotrienes in killing of Mycobacterium bovis by neutrophils   总被引:2,自引:0,他引:2  
The neutrophil (PMN) plays an important role in the phagocytosis and killing of microorganisms. Pro-inflammatory leukotrienes (LT) play an important role in various disease states. However LT elaborated by PMN have also been shown to be important in host defense, specifically phagocytosis and killing of microorganisms. Defective LT synthesis by phagocytes correlates with their reduced anti-microbial activity. Therefore, we determined if LT played an important role in the killing of Mycobacteria bovis (M. bovis) by PMN. Endogenous LT play a role in the killing of mycobacteria since the LT synthesis inhibitor MK-886 reversed the killing of M. bovis by PMN. Increased synthesis of LT occurred following incubation of PMN with M. bovis. Treatment with granulocyte-colony stimulating factor, which augments PMN LT synthesis, also boosted anti-microbial activity. Furthermore, exogenous LTB4 augmented dose-dependent killing of M. bovis by PMN. In conclusion, LT play a vital role in promoting mycobactericidal actions of PMN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号