首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that the region of human urokinase-type plasminogen activator (uPA) responsible for receptor binding resides in the amino-terminal fragment (ATF, residues 1-135) (Stoppelli, M.P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R.K. (1985) Proc. Natl. Acad. Sci. U.S. A. 82, 4939-4943). The area within ATF responsible for specific receptor binding has now been identified by the ability of different synthetic peptides corresponding to different regions of the amino terminus of uPA to inhibit receptor binding of 125I-labeled ATF. A peptide corresponding to human [Ala19]uPA-(12-32) resulted in 50% inhibition of ATF binding at 100 nM. Peptides uPA-(18-32) and [Ala13]uPA-(9-20) inhibit at 100 and 2000 microM, respectively. The human peptide uPA-(1-14) and the mouse peptide [Ala20]uPA-(13-33) have no effect on ATF receptor binding. This region of uPA is referred to as the growth factor module since it shares partial amino acid sequence homology (residues 14-33) to epidermal growth factor (EGF). Furthermore, this region of EGF is responsible for binding of EGF to its receptor (Komoriya, A. Hortsch, M., Meyers, C., Smith, M., Kanety, H., and Schlessinger, J. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1351-1355). However, EGF does not inhibit ATF receptor binding. Comparison of the sequences responsible for receptor binding of uPA and EGF indicate that the region of highest homology is between residues 13-19 and 14-20 of human uPA and EGF, respectively. In addition, there is a conservation of the spacings of four cysteines in this module whereas there is no homology between residues 20-30 and 21-33 of uPA and EGF. Thus, residues 20-30 of uPA apparently confer receptor binding specificity, and residues 13-19 provide the proper conformation to the adjacent binding region.  相似文献   

2.
A monoclonal antibody against human epidermal growth factor (hEGF) was obtained from a mouse hybridoma cell line. The purified monoclonal antibody from the ascites fluid of a mouse injected with one of the cell lines was specific for hEGF and did not cross-react with mouse EGF (mEGF). Its Kd value for hEGF was 1.4 X 10(-9) M. This monoclonal antibody inhibited the biological activities of hEGF, including its binding to the receptor of BALB/3T3 cells and its stimulation of DNA synthesis in the cells, but did not affect the activities of mEGF. The monoclonal antibody completely inhibited DNA synthesis stimulated by human urine from a patient without a tumor, but only partially inhibited the stimulatory activity in urine from a tumor-bearing patient.  相似文献   

3.
Immunochemical studies were designed to localize antigenic regions recognized by two monoclonal antibodies directed against the alpha-subunit of human choriogonadotropin (hCG-alpha) and to provide information on the three-dimensional structure of hCG and its alpha-subunit. Monoclonal antibody HT13 bound to a region accessible on both hCG and the free alpha-subunit, whereas monoclonal antibody AHT20 recognized a site localized only on the free alpha-subunit. By studying the cross-reactivity of these antibodies to homologous proteins, we found that antibody HT13 did not bind to equine or ovine lutropin, whereas AHT20 was capable of binding to both subunits. This observation suggests that AHT20 recognized a structurally related antigenic determinant on alpha-subunits of different species. To delineate the portions of hCG-alpha contributing to the antigenic determinants of AHT20 and HT13, we performed competitive inhibition assays using reduced and carboxymethylated hCG-alpha, deglycosylated hCG-alpha, hCG-alpha minus the 5 COOH-terminal residues (hCG-alpha core 1), or disulfide-bridged peptides comprising residues 1-35 and 52-91 of hCG-alpha (hCG-alpha core 2). Reduced and carboxymethylated hCG-alpha did not inhibit the binding of 125I-labeled hCG-alpha to both antibodies, whereas deglycosylated hCG-alpha was as active as hCG-alpha, suggesting that antigenic determinants of both antibodies are mainly discontinuous and do not reside on the oligosacharide part of the alpha-subunit. hCG-alpha core 1 had the same capacity as intact hCG-alpha to inhibit the binding of 125I-hCG-alpha to both antibodies, indicating that the 5 COOH-terminal residues of hCG-alpha do not participate in the antigenic determinants. hCG-alpha core 1 was as potent as hCG-alpha in inhibition experiments performed with HT13, whereas, in striking contrast, hCG-alpha core 2 did not compete with 125I-hCG-alpha for binding to AHT20, suggesting that the peptides released after proteolysis of the alpha-subunit by trypsin participate in the epitope of AHT20 and are not included in the antigenic determinant of HT13. In an attempt to elucidate the amino acid residues constituting the antigenic sites of HT13 and AHT20, hapten inhibition experiments were carried out using as competitive inhibitors five different synthetic peptides spanning the primary structure of hCG-alpha. None of these peptides inhibited the binding of 125I-hCG-alpha to HT13. In contrast, two peptides analogous to regions 23-43 and 33-59 of hCG-alpha exhibited significant potency in competing with 125I-hCG-alpha for binding to AHT20.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Hepatitis B surface antigen (HBsAg) particles are composed of a major polypeptide, p25, and additional polypeptides of higher m.w., namely p33 and p39, are variably present. All three polypeptides share the 226 amino acid residues of the S region: p33 consists of the p25 sequence plus an NH2-terminal 55 residues (pre-S(2], and p39 consists of the p33 sequence plus an NH2-terminal 108-119 residues (pre-S(1). In previous studies we demonstrated the influence of two Ir genes on the humoral and cellular immune responses to the S region and identified nonresponder phenotypes (H-2f,s). Subsequent studies showed that the immune response to the pre-S(2) region was regulated by H-2-linked genes independently of the S region response, such that immunization of S region nonresponder, pre-(S2) region responder mice (H-2s) with HBsAg/p33 circumvented nonresponse to the S region. In the present study, we have extended this analysis to the pre-S(1) region of HBsAg, with the following results: 1) and pre-S(1) region is immunogenic at the T and B cell levels; 2) anti-pre-S(1) specific antibody production is regulated by H-2-linked genes and can be independent of anti-S and anti-pre-S(2) antibody production; 3) immunization of H-2f strains with HBsAg/p39 particles containing the pre-S(1) region can bypass nonresponsiveness to the S and pre-S(2) regions in terms of antibody production; 4) two synthetic peptides, p32-53 and p94-117, define murine and human antibody binding sites on the pre-S(1) region, and p1-21 and p12-32 define additional human antibody binding sites; 5) pre-S(1)-specific T cells can be elicited in S and pre-S(2) region nonresponder mice (H-2f) and provide functional T cell help for S-pre-S(2)-, and pre-S(1)-specific antibody production; and 6) a T cell recognition site in the pre-S(1) region, p12-32 was identified. These results are relevant to HBV vaccine development, and possibly to viral clearance mechanisms, since the higher m.w. polypeptides are preferentially expressed on intact virions.  相似文献   

5.
Pituitary and placental glycoprotein hormones are heterodimers with alpha-subunits of identical primary structure, but dissimilar beta-subunits. Regions of structural similarity between the beta-subunits might be involved in interaction with the homologous alpha-subunits, and regions of structural dissimilarity could, therefore, be candidates for receptor interactions. A restrained matrix dot-plot analysis identified hFSH-beta-(8-32) and hFSH-beta-(55-65) as candidates for interaction with alpha-subunit. Therefore, by subtraction, hFSH-beta-(33-54) and hFSH-beta-(66-111) seemed candidates for regions of interaction with receptor. In a previous report we demonstrated that hFSH-beta-(33-53) represented a receptor-binding region of hFSH-beta. Analysis of structural parameters (flexibility, surface probability, secondary structure prediction, etc.) indicates similarities between hFSH-beta-(33-53) and hFSH-beta-(85-95), suggesting the latter might be the component of hFSH-beta-(61-111) interacting with the receptor. Testing of 11 synthetic peptides, corresponding to the primary structure of hFSH-beta, demonstrated that hFSH-beta-(31-45)-peptide amide, were unique in ability to inhibit 125I-follicle-stimulating hormone binding to receptor. hFSH-beta-(81-95)-peptide amide also stimulated estradiol biosynthesis in Sertoli cell cultures. The correlation between binding inhibition and surface probability, flexibility, and predicted secondary structure (alpha, extended, and turn) was highly significant (R2 = 0.87, p less than 0.0001). Regression significance for these parameters, taken individually, were very poor. Receptor-binding regions, therefore, appear to be characterized by a particular and complex arrangement of secondary structure motifs, surface probability, and flexibility.  相似文献   

6.
Antibodies to synthetic peptides were employed in order to map domains on the alpha-subunit of the acetylcholine receptor to which several monoclonal antibodies are directed. Five peptides corresponding to residues 1-20, 126-143, 169-181, 330-340 and 351-368 of the receptor alpha-subunit were synthesized and antibodies against them were elicited. The anti-peptide antibodies were employed along with the monoclonal antibodies to identify fragments of S. aureus V8 protease digested- alpha-subunit in immunoblotting experiments. Our results demonstrate that a highly immunogenic region of the alpha-subunit is located on a carboxy-terminal 14 kDa portion of the alpha-subunit. This region also seems to undergo antigenic changes during muscle development. A monoclonal antibody directed against the cholinergic binding site of the acetylcholine receptor reacted with an 18 kDa segment of the alpha-subunit which bound alpha-bungarotoxin as well as antibodies directed against peptide 169-181.  相似文献   

7.
The EGF receptor is an actin-binding protein   总被引:16,自引:0,他引:16       下载免费PDF全文
In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996.  相似文献   

8.
A series of antibodies, directed against murine interleukin-3 (IL-3) or synthetic peptides corresponding to portions of the IL-3 sequence, has been used to detect receptor-bound IL-3 on the surface of cells. An assay was developed in which the bound primary antibody was detected using a biotinylated secondary antibody and fluorescein isothiocyanate-labeled streptavidin, followed by analysis on a fluorescence-activated cell sorter. The fluorescence signal was shown to be specific for cells known to express IL-3 receptors and was dependent on the preincubation of cells with IL-3 under conditions that did not allow internalization of receptors. Antisera raised against full-length synthetic IL-3 or to the N-terminal 29 residues were found to give equivalent signals. On the other hand, antibodies to residues 91-118 showed no signal in this assay, despite being able to bind to IL-3 in solution and neutralize IL-3 bioactivity. When peptides corresponding to residues 30-43 and 123-140 were incubated with the anti-IL-3 antiserum, the majority of the fluorescence signal was abolished, indicating that these two peptides contained the primary epitopes being recognized by the antiserum in this assay. This antiserum also bound to the 91-118 peptide, but the corresponding peptide was not able to reduce the fluorescence signal in a similar competition assay. These results suggest that the 91-118 region is not accessible to antibody when IL-3 is bound to its receptor, whereas at least portions of epitopes 1-29, 30-43, and 123-140 remain accessible to antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Eight analogues of human epidermal growth factor (hEGF) having specific amino acid substitutions in the beta-sheet structure (residues 19-31) of the amino-terminal domain were generated by site-directed mutagenesis. Affinity of the epidermal growth factor (EGF) receptor for each of these mutant hEGF analogues was measured by both radioreceptor competition binding and receptor tyrosine kinase stimulation assays. The relative binding affinities obtained by these two methods were generally in agreement for each hEGF species. The results indicate that hydrophobic residues on the exposed surface of the beta-sheet structure of the amino-terminal domain of hEGF have an important role in the formation of the active EGF-receptor complex. The substitution of hydrophobic amino acid residues, Val-19----Gly, Met-21----Thr, Ile-23----Thr, and Leu-26----Gly, resulted in decreased binding affinity, with the most severe reductions observed with the last two mutants. The mutations Ala-25----Val and Lys-28----Arg introduced amino acid residues resulting in slightly increased receptor binding affinity. Similar to previous results with acidic residues in this region [Engler, D.A., Matsunami, R.K., Campion, S.R., Stringer, C.D., Stevens, A., & Niyogi, S.K. (1988) J. Biol. Chem. 263, 12384-12390], removal of the positive charge in the Lys-28----Leu substitution had almost no effect on binding affinity, indicating the lack of any absolute requirement for ionic interactions at this site. Substitution of Tyr-22, which resulted in decreased receptor binding affinity, provides further indication of the importance of aromatic residues in this region of the molecule, as found earlier with Tyr-29 (cf. reference above).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
One of the major drawbacks limiting the use of synthetic peptide vaccines in genetically distinct populations is the fact that different epitopes are recognized by T cells from individuals displaying distinct major histocompatibility complex molecules. Immunization of mice with peptide (181-195) from the immunodominant 43 kDa glycoprotein of Paracoccidioides brasiliensis (gp43), the causative agent of Paracoccidioidomycosis (PCM), conferred protection against infectious challenge by the fungus. To identify immunodominant and potentially protective human T-cell epitopes in gp43, we used the TEPITOPE algorithm to select peptide sequences that would most likely bind multiple HLA-DR molecules and tested their recognition by T cells from sensitized individuals. The 5 most promiscuous peptides were selected from the gp43 sequence and the actual promiscuity of HLA binding was assessed by direct binding assays to 9 prevalent HLA-DR molecules. Synthetic peptides were tested in proliferation assays with peripheral blood mononuclear cells (PBMC) from PCM patients after chemotherapy and healthy controls. PBMC from 14 of 19 patients recognized at least one of the promiscuous peptides, whereas none of the healthy controls recognized the gp43 promiscuous peptides. Peptide gp43(180-194) was recognized by 53% of patients, whereas the other promiscuous gp43 peptides were recognized by 32% to 47% of patients. The frequency of peptide binding and peptide recognition correlated with the promiscuity of HLA-DR binding, as determined by TEPITOPE analysis. In silico prediction of promiscuous epitopes led to the identification of naturally immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous patient population exposed to P. brasiliensis. The combination of several such epitopes may increase the frequency of positive responses and allow the immunization of genetically distinct populations.  相似文献   

11.
Functional properties of the DNA-binding domain of the human glucocorticoid receptor were investigated using high titer polyclonal antibodies produced against single synthetic peptides or a mixture of peptides whose sequences were derived from the DNA-binding domain of steroid receptor proteins. Three of seven antisera recognized both native and denatured forms of the glucocorticoid receptor, although considerably lower antisera dilutions were required for antibody binding to native receptor. Activation of the glucocorticoid receptor to its DNA-binding form was required for antibody recognition of the native receptor. Antisera to the second finger region of the DNA-binding domain caused a portion of the activated 4S glucocorticoid receptor to sediment as 7 or 9S in sucrose gradients containing 0.4 M KCl, but did not alter the sedimentation of the nontransformed 8S receptor. Specificity of the glucocorticoid receptor-antibody interaction was demonstrated by loss of reactivity after preabsorption with peptide antigens. Antisera that interacted specifically with the glucocorticoid receptor inhibited DNA binding of the activated receptor by as much as 80%. Thus, antibody probes directed against DNA-binding domain sequences provide immunological evidence that glucocorticoid receptor activation exposes the DNA-binding region of the receptor.  相似文献   

12.
Most anti-nicotinic acetylcholine receptor (AChR) antibodies in myasthenia gravis are directed against an immunodominant epitope or epitopes [main immunogenic region (MIR)] on the AChR alpha-subunit. Thirty-two synthetic peptides, corresponding to the complete Torpedo alpha-subunit sequence and to a segment of human muscle alpha-subunit, were used to map the epitopes for 11 monoclonal antibodies (mAbs) directed against the Torpedo and/or the human MIR and for a panel of anti-AChR mAbs directed against epitopes on the alpha-subunit other than the MIR. A main constituent loop of the MIR was localized within residues alpha 67-76. Residues 70 and 75, which are different in the Torpedo and human alpha-subunits, seem to be crucial in determining the binding profile for several mAbs whose binding to the peptides correlated very well with their binding pattern to native Torpedo and human AChRs. This strongly supports the identification of the peptide loop alpha 67-76 as the actual location of the MIR on the intact AChR molecule. Residues 75 and 76 were necessary for binding of some mAbs and irrelevant for others, in agreement with earlier suggestions that the MIR comprises overlapping epitopes. Structural predictions for the sequence segment alpha 67-76 indicate that this segment has a relatively high segmental mobility and a very strong turning potential centered around residues 68-71. The most stable structure predicted for this segment, in both the Torpedo and human alpha-subunits, is a hairpin loop, whose apex is a type I beta-turn and whose arms are beta-strands. This loop is highly hydrophilic, and its apex is negatively charged. All these structural properties have been proposed as characteristic of antibody binding sites. We also localized the epitopes for mAbs against non-MIR regions. Among these, the epitope for a monoclonal antibody (mAb 13) that noncompetitively inhibits channel function was localized within residues alpha 331-351.  相似文献   

13.
We have previously reported that synthetic peptide amides corresponding to subdomains of the human FSH 3-subunit, hFSH-beta-(33--53) and hFSH-beta-(81--95), interact with the external domain of the FSH receptor in two in vitro model systems. Consistent with these in vitro observations, we found that intraperitoneal (i.p.) administration of each of these peptides prolonged vaginal estrus in normally cycling mice in vivo. Both hFSH-beta-(33--53) and hFSH-beta-(81--95) contain cysteine (Cys) residues with free sulfhydryl groups of potential significance in receptor interactions. To assess the possible involvement of these groups in the in vivo effects of hFSH-beta-(33--53) and hFSH-beta-(81--95), synthetic peptide analogs were prepared in which all Cys residues were replaced with serine (Ser). In the present study, we demonstrate that the in vivo effect of hFSH-beta-(33--53) on the mouse estrous cycle, extension of vaginal estrus, was not changed by substitution of Cys-51 with Ser. In contrast, mice receiving the Ser-substituted analog of hFSH-beta-(81--95) had normal estrus stages, but were arrested in diestrus. hFSH-beta-(33--53)-(81--95), a linear peptide encompassing both domains, also prolonged vaginal estrus. The Ser-substituted analog of this peptide, however, prolonged vaginal estrus in some of the mice tested and induced cycle arrest at diestrus in others. hFSH-beta-(90--95), the active subdomain at the C-terminus of hFSH-beta-(81--95), extended vaginal estrus, but diestrus stages were of normal duration. Its Ser-substituted analog, however, prolonged the estrus stage of the majority of mice treated, but induced diestrus arrest in some. The differing responses to these peptides are presumably due to interactions of the synthetic peptides with different regions of the FSH receptor. This further suggests that one consequence of ligand interaction with multiple receptor binding domains may be variable effects on ovarian function, and that Cys to Ser analogs may have value in the design of a novel class of synthetic peptides capable of fertility regulation and control.  相似文献   

14.
In order to study antigenic site(s) present in the carboxyl-terminal part of the alpha-subunit of human choriogonadotropin (hCG-alpha), we attempted to produce site-specific antibodies directed against a 34-residue synthetic peptide analogous to region 59-92 of hCG-alpha. From a fusion experiment performed with a mouse injected with hCG-alpha-(59-92)-peptide conjugated to tetanus toxoid as immunogen, we selected a monoclonal antipeptide antibody (designated FA36) which has high binding activity for 125I-hCG-alpha but not for 125I-hCG in a radioimmunoassay. This antibody is of the IgG1 subclass and displays an affinity constant for 125I-hCG-alpha of 3.1 x 10(8) M-1. Hapten inhibition experiments performed by either radioimmunoassay or enzyme-linked immunosorbent assay with synthetic peptides spanning different portions of the region (59-92) demonstrated that the binding site of FA36 resides on (minimally) the six COOH-terminal amino acids of hCG-alpha, namely Cys-Tyr-Tyr-His-Lys-Ser, and that FA36 binds preferentially to peptides containing a carboxyl group on the COOH-terminal residue. Monoclonal immunoradiometric assays were established to determine the location of antigenic regions recognized by FA36, by antibody AHT20 (which binds only to hCG-alpha), and by antibody HT13 (which binds to both hCG and hCG-alpha). FA36 has the capacity to bind to hCG-alpha bound to either AHT20 or HT13, demonstrating that both AHT20 and HT13 antibodies are directed against antigenic regions distinct from the epitope of FA36. Monoclonal immunoradiometric assays were also carried out to study the binding of FA36 to hCG, the ovine and equine lutropin alpha-subunit, or hCG-alpha minus the 5 COOH-terminal residues (hCG-alpha core). Whereas significant binding of 125I-FA36 was observed with the ovine lutropin alpha-subunit, no binding was found with the equine lutropin alpha-subunit. As expected, FA36 did not bind to hCG-alpha core. Binding was also not detected with hCG, confirming that FA36 is specific for free hCG-alpha and that the COOH-terminal part of hCG-alpha is either weakly or (more likely) not at all accessible in the alpha/beta-dimer for antibody binding. Finally, immunoblots performed on hCG-alpha-(59-62)-peptide and various denatured alpha-subunits indicated that, with the exception of the equine lutropin alpha-subunit, FA36 detected various denatured alpha-subunits and particularly the alpha-subunit of carp gonadotropin-thyrotropin. This latter observation suggests a high degree of homology between the COOH-terminal regions of the alpha-subunits of fish gonadotropin and analogous mammalian hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Human follicle-stimulating hormone receptor (hFSHR) belongs to family I of G protein-coupled receptors. FSHR extracellular domain (ECD) is predicted to have 8-9 alphabeta or leucine-rich repeat motif elements. The objective of this study was to identify elements of the FSHR ECD involved in ligand binding. Preincubation of recombinant hFSHR ECD with rabbit antisera raised against synthetic peptides of hFSHR ECD primary sequence abolished follitropin binding primarily in the region of amino acids 150-254. Accessibility of hFSHR ECD after hormone binding, captured by monoclonal antibodies against either ECD or FSH, was decreased for the region of amino acids 150-220 but additionally for amino acids 15-100. Thus, when hFSH bound first, accessibility of antibody binding was decreased to a much larger extent than if antibody was bound first. This suggestion of a conformational change upon binding was examined further. Circular dichroism spectra were recorded for purified single chain hFSH, hFSHR ECD, and hFSHR ECD-single chain hFSH complex. A spectral change indicated a small but consistent conformational change in the ECD.FSH complex after hormone binding. Taken together, these data demonstrate that FSH binding requires elements within the leucine-rich repeat motifs that form a central region of hFSHR ECD, and a conformational change occurs upon hormone binding.  相似文献   

16.
Murine and human epidermal growth factor receptors (EGFRs) bind human EGF (hEGF), mouse EGF (mEGF), and human transforming growth factor alpha (hTGF-alpha) with high affinity despite the significant differences in the amino acid sequences of the ligands and the receptors. In contrast, the chicken EGFR can discriminate between mEGF (and hEGF) and hTGF-alpha and binds the EGFs with approximately 100-fold lower affinity. The regions responsible for this poor binding are known to be Arg(45) in hEGF and the L2 domain in the chicken EGFR. In this study we have produced a truncated form of the hEGFR ectodomain comprising residues 1-501 (sEGFR501), which, unlike the full-length hEGFR ectodomain (residues 1-621, sEGFR621), binds hEGF and hTGF-alpha with high affinity (K(D) = 13-21 and 35-40 nM, respectively). sEGFR501 was a competitive inhibitor of EGF-stimulated mitogenesis, being almost 10-fold more effective than the full-length EGFR ectodomain and three times more potent than the neutralizing anti-EGFR monoclonal antibody Mab528. Analytical ultracentrifugation showed that the primary EGF binding sites on sEGFR501 were saturated at an equimolar ratio of ligand and receptor, leading to the formation of a 2:2 EGF:sEGFR501 dimer complex. We have used sEGFR501 to generate three mutants with single position substitutions at Glu(367), Gly(441), or Glu(472) to Lys, the residue found in the corresponding positions in the chicken EGFR. All three mutants bound hTGF-alpha and were recognized by Mab528. However, mutant Gly(441)Lys showed markedly reduced binding to hEGF, implicating Gly(441), in the L2 domain, as part of the binding site that recognizes Arg(45) of hEGF.  相似文献   

17.
Identification of regions of arrestin that bind to rhodopsin   总被引:6,自引:0,他引:6  
Arrestin facilitates phototransduction inactivation through binding to photoactivated and phosphorylated rhodopsin (RP). However, the specific portions of arrestin that bind to RP are not known. In this study, two different approaches were used to determine the regions of arrestin that bind to rhodopsin: panning of phage-displayed arrestin fragments against RP and cGMP phosphodiesterase (PDE) activity inhibition using synthetic arrestin peptides spanning the entire arrestin protein. Phage display indicated the predominant region of binding was contained within amino acids 90-140. A portion of this region (residues 95-140) expressed as a fusion protein with glutathione S-transferase is capable of binding to rhodopsin regardless of the activation or phosphorylation state of the receptor. Within this region, the synthetic peptide of residues 109-130 was shown to completely inhibit the binding of arrestin to rhodopsin with an IC50 of 1.1 mM. The relatively high IC50 of this competition suggests that this portion of the molecule may be only one of several regions of binding between arrestin and RP. A survey of synthetic arrestin peptides in the PDE assay indicated that the two most effective inhibitors of PDE activity were peptides of residues 111-130 and 101-120. These results indicate that at least one of the principal regions of binding between arrestin and RP is contained within the region of residues 109-130.  相似文献   

18.
The present paper describes the isolation and characterization of a clone of hybrid myelomas (3-E7) secreting a mouse monoclonal antibody to beta-endorphin. An examination of its specificity against a series of human beta-lipotropin fragments and other opioid peptides revealed that the N-terminus portion of beta-endorphin is the determinant. Complete or almost complete cross-reactivity was obtained to methionine- and leucine-enkephalin, beta-lipotropin 60-65, and BAM 22; partial cross-reactivity was seen to dynorphin1-13 and alpha-neo-endorphin, whereas beta-lipotropin, alpha-N-acetyl-beta-endorphin, Des-Tyr1-beta-endorphin, in addition to a series of synthetic enkephalin derivatives, completely lacked cross-reactivity. The use of the monoclonal antibody in radioimmunoassay (RIA) for beta-endorphin resulted in a lower sensitivity related to respective polyclonal antibodies. An increase of 100% in tracer binding could, however, be obtained by use of beta-endorphin iodinated with its N-terminal tyrosine protected by coupling to an antibody. A solid-phase RIA was developed involving the internally 3H-labeled monoclonal antibody, which resulted in a 10-fold increase in sensitivity as compared with the homogenous RIA. These data indicate that for the binding to this antibody a tyrosine residue in position 61 is essential, and it thus recognizes a site that is of functional significance for many naturally occurring opioid peptides.  相似文献   

19.
Antisera were produced in rabbits against synthetic peptides based on two regions of the cDNA sequence of the beta 1 subunit of bovine gamma-aminobutyric acidA (GABAA) receptors. The deduced amino acid sequences were similar in other beta subunits of bovine, rat, and chick receptors, predicting cross-reactability with all beta subunits. One antiserum (anti-beta e) was raised against an extracellular moiety near the invariant disulfide loop thought to be located near the neurotransmitter binding domain; the other (anti-beta c) was raised against an intracellular moiety containing a consensus sequence for cyclic AMP-dependent protein kinase phosphorylation of a serine residue. Predicted secondary structures suggested high potential immunogenicity for the chosen antigen peptides. Both antisera at high dilutions recognized the same polypeptide bands on western blots of GABAA receptors purified from three regions of bovine brain (four bands at 57, 54, 53, and 52 kDa in cerebral cortex) but fewer bands (57, 54, and 52 kDa) in hippocampus and cerebellum (one major band at 54 kDa, traces at 57 and 53 kDa). This is consistent with the presence of multiple beta subunits whose expression varies with brain region, as shown by molecular cloning. The anti-beta c antibody was able to immunoprecipitate purified GABAA receptor [3H]-muscimol binding, 87% in bovine cortex and 75% in total rat brain; the anti-beta e was unable to immunoprecipitate any antigen. These antibodies indicate a region-dependent heterogeneity of beta subunits and should be useful for analyzing structure, function, and localization of GABAA receptor subtypes in brain.  相似文献   

20.
Using a synthetic DNA library coding for random 10-amino acid peptides (R10aPL), mRNA-display was applied to the isolation of interactive peptides using a monoclonal antibody against human TP53 (hTP53) as a model. Display molecules consisting of peptides and the nucleotide sequences encoding them were synthesized in vitro and subjected to four to five cycles of affinity selection. Thirty-four clones each isolated in the 4th or 5th round were sequenced. A core sequence, (X)-S-D-L-(Z)-K-L essential for binding was found, in which (X) and (Z), though undefined, were mostly F or Y and W, respectively. Although no peptides that fully matched with hTP53 were found in the clones isolated, the core sequence was found in hTP53. A 10-amino acid peptide containing the core sequence was chemically synthesized to verify its binding with SPR. Its Kd value for the antibody was 6 nM. The amino acids in epitopes essential for binding could be identified by mRNA-display with R10aPL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号