首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purified toga-alphavirus, Getah (GET), showed optimal hemolytic activity for one-day-old chick red blood cells when incubated at 37 C for 120 min at pH 6.2. Experimental data obtained from various angles, such as pH dependency, inhibition by virus-specific antiserum and by concanavalin A, indicated that the hemolysis was a property of the virus particle itself. Although the mechanism of hemolysis by togaviruses has not been known, our results indicated that viral lipids may participate in this activity since the hemolytic activity was impaired by delipidation procedures.  相似文献   

2.
B Aroeti  Y I Henis 《Biochemistry》1988,27(15):5654-5661
In order to investigate the requirement for lateral mobilization of viral envelope glycoproteins on the cell surface in the induction of cell-cell fusion, we employed fluorescence photobleaching recovery to study the effect of the fusion temperature on the lateral mobilization of Sendai virus glycoproteins in the human erythrocyte membrane. As the fusion temperature was reduced below 37 degrees C (to 31 or 25 degrees C), the rates of virus-cell fusion, the accompanying hemolysis, and cell-cell fusion were all slowed down. However, the plateau (final level) after the completion of fusion was significantly reduced at lower fusion temperatures only in the case of cell-cell fusion, despite the rather similar final levels of virus-cell fusion. A concomitant decrease as a function of the fusion temperature was observed in the fraction of cell-associated viral glycoproteins that became laterally mobile in the erythrocyte membrane during fusion, and a strict correlation was found between the level of laterally mobile viral glycoproteins in the cell membrane and the final extent of cell-cell fusion. The accompanying reduction in the lateral diffusion coefficients (D) of the viral glycoproteins (1.4-fold at 31 degrees C and 1.9-fold at 25 degrees C, as compared to 37 degrees C) does not appear to determine the final level of cell-cell fusion, since fusing the cells with a higher amount of virions at 25 degrees C increased the final level of cell-cell fusion while D remained constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the fusion activity of Sendai virus, a lipid-enveloped paramyxovirus, towards a line of adherent cells designated PC-12. Fusion was monitored by the dequenching of octadecyl-rhodamine, a fluorescent non-exchangeable probe. The results were analysed with a mass action kinetic model which could explain and predict the kinetics of virus-cell fusion. When the temperature was lowered from 37 degrees C to 25 degrees C, a sharp inhibition of the fusion process was observed, probably reflecting a constraint in the movement of viral glycoproteins at low temperatures. The rate constants of adhesion and fusion were reduced 3.5-fold and 7-fold, respectively, as the temperature was lowered from 37 degrees C to 25 degrees C. The fusion process seemed essentially pH-independent, unlike the case of liposomes and erythrocyte ghosts. Preincubation of the virus in the absence of target cell membranes at neutral and alkaline pH (37 degrees C, 30 min) did not affect the fusion process. However, a similar preincubation of the virus at pH = 5.0 resulted in marked, though slow, inhibition in fusion with the fusion rate constant being reduced 8-fold. Viral preincubation for 5 min in the same acidic conditions yielded a mild inhibition of fusogenic activity, while preincubation in the cold (4 degrees C, 30 min) did not alter viral fusion activity. These acid-induced inhibitory effects could not be fully reversed by further viral preincubation at pH = 7.4 (37 degrees C, 30 min). Changes in internal pH as well as endocytic activity of PC-12 cells had small effect on the fusion process, thus indicating that Sendai virus fuses primarily with the plasma membranes.  相似文献   

4.
T Maeda  A Asano  K Oki  Y Okada  S Onishi 《Biochemistry》1975,14(17):3736-3741
Fusion of red blood cells (RBC) induced by hemagglutinating virus of Japan (HVJ) has been studied using a phosphatidylcholine spin label. The spin label was readily incorporated and diffused into the lipid bilayer portion of the viral envelope. The exchange broadening in the electron spin resonance (ESR) spectrum of densely labeled virus disappeared rapidly when the virus was mixed with RBC at 37 degrees. The spectrum gradually approached that of the host cell spin labeled with the phosphatidylcholine label. The results directly indicate transfer and intermixing of phospholipid molecules between the viral envelope and RBC membrane. The transfer reaction was strongly dependent on temperature. No transfer was observed at lower temperatures where the virus adsorbed to the cell and caused aggregation but no hemolysis and fusion. The transfer rate remained negligibly small until 19 degrees and increased rapidly between 25 and 30 degrees. The virus-induced hemolysis showed similar temperature dependence. The transfer rate was greatly reduced under inhibitory conditions of fusion: glutaraldehyde treatment of RBC, trypsin treatment of HVJ, or the presence of concanavalin A. Only slight transfer was observed from fusion-inactive influenza virus to RBC. The transfer was greatly enhanced by the help of HVJ. The close parallelism suggests that the transfer and intermixing are necessary steps to the cell fusion. The transfer rate was dependent on fluidity of the host cell membrane and independent of the viral dose. The virus-induced transfer of phospholipid molecules between RBC's was also detected by the spin label. Its temperature dependence was quite similar to that for the virus-to-cell transfer. The intercellular transfer was nearly proportional to the viral dose.  相似文献   

5.
A kinetic and quantitative analysis of the binding and fusion of Sendai virus with erythrocyte membranes was performed by using a membrane fusion assay based on the relief of fluorescence self-quenching. At 37 degrees C, the process of virus association displayed a half time of 2.5 min; at 4 degrees C, the half time was 3.0 min. The fraction of the viral dose which became cell associated was independent of the incubation temperature and increased with increasing target membrane concentration. On the average, one erythrocyte ghost can accommodate ca. 1,200 Sendai virus particles. The stability of viral attachment was sensitive to a shift in temperature: a fraction of the virions (ca. 30%), attached at 4 degrees C, rapidly (half time, ca. 2.5 min) eluted from the cell surface at 37 degrees C, irrespective of the presence of free virus in the medium. The elution can be attributed to a spontaneous, temperature-induced release, rather than to viral neuraminidase activity. Competition experiments with nonlabeled virus revealed that viruses destined to fuse do not exchange with free particles in the medium but rather bind in a rapid and irreversible manner. The fusion rate of Sendai virus was affected by the density of the virus particles on the cell surface and became restrained when more than 170 virus particles were attached per ghost. In principle, all virus particles added displayed fusion activity. However, at high virus-to-ghost ratios, only a fraction actually fused, indicating that a limited number of fusion sites exist on the erythrocyte membrane. We estimate that ca. 180 virus particles maximally can fuse with one erythrocyte ghost.  相似文献   

6.
The temperature dependence of membrane interactions between PR8 influenza virus and virus receptor (GD1a)-containing liposomes was studied. For quantitation, the octadecylrhodamine B chloride (R18) membrane marker was incorporated into liposomes at quenched concentrations. Upon interaction with target membranes, the marker gets diluted, and dequenching can be measured in a fluorescence spectrophotometer. Rate constants were calculated from the dequenching curves under low pH conditions, which allow for fusion, and at neutral pH, where no specific fusion occurs. Activation energies were determined from Arrhenius plots. The results were compared with the temperature dependence of other viral activities like infectivity, hemolysis, and fusion with erythrocytes. For the slow reaction at pH 7.4, where only non-specific lipid transfer takes place, the activation energy was about 24 kcal/mole between 15 degrees C and 45 degrees C. For the fast, hemagglutinin (HA)-specific fusion reaction (pH 5.3), a very low activation energy (approximately 7 kcal/mole) was found between 25 degrees C and 37 degrees C, whereas below 25 degrees C it was much higher (approximately 34 kcal/mole). The temperature range with low activation energy coincides with the one for optimal infectivity, hemolysis, and fusion with erythrocytes. Furthermore, it is the same range in which the conformational change of HA takes place, which in the absence of a partner membrane leads to an irreversible inactivation of the fusion protein.  相似文献   

7.
We employed a spectroscopic assay, based on the hemolysis of sheep red blood cells (SRBCs), to assess the innate immune function of saltwater and freshwater crocodiles in vitro. Incubation of serum from freshwater and saltwater crocodiles with SRBCs resulted in concentration-dependent increases in SRBC hemolysis. The hemolytic activity occurred rapidly, with detectable activity within 2 min and maximum activity at 20 min. These activities, in both crocodilian species, were heat sensitive, unaffected by 20 mM methylamine, and completely inhibited by low concentrations of EDTA, suggesting that the alternative serum complement cascade is responsible for the observed effects. The hemolytic activities of the sera were inhibited by other chelators of divalent metal ions, such as phosphate and citrate. The inhibition of SRBC hemolysis by EDTA could be completely restored by the addition of 10 mM Ca2+ or Mg2+, but not Ba2+, Cu2+ or Fe2+, indicating specificity for these metal ions. The serum complement activities of both crocodilians were temperature-dependent, with peak activities occurring at 25-30 degrees C and reduced activities below 25 degrees C and above 35 degrees C.  相似文献   

8.
The hemagglutinin of influenza virus undergoes a conformational change at low pH, which results in exposure of a hydrophobic segment of the molecule, crucial to expression of viral fusion activity. We have studied the effects of incubation of the virus at low pH either at 37 or 0 degrees C. Treatment of the virus alone at pH 5.0 induces the virus particles to become hydrophobic, as assessed by measuring the binding of zwitterionic liposomes to the virus. At 37 degrees C this hydrophobicity is transient, electron microscopic examination of the virus reveals a highly disorganized spike layer, and fusion activity toward ganglioside-containing zwitterionic liposomes, measured at 37 degrees C with a kinetic fluorescence assay, is irreversibly lost. By contrast, after preincubation of the virus alone at pH 5.0 and 0 degrees C fusion activity remains unaffected. Yet, the preincubation at 0 degrees C does result in exposure of the hydrophobic segment of hemagglutinin, but now hydrophobicity is sustained and viral spike morphology unaltered. Hydrophobicity also remains to a significant extent upon pH neutralization, but fusion activity is negligible under these conditions. It is concluded that for optimal expression of fusion activity the virus must be bound to the target membrane before exposure to low pH. Furthermore, even after exposure of the hydrophobic segment of hemagglutinin, fusion occurs only at low pH. Finally, fusion occurs only at elevated temperature, possibly reflecting the unfolding of hemagglutinin trimers or the cooperative action of several hemagglutinin trimers in the reaction.  相似文献   

9.
O Nussbaum  M Lapidot    A Loyter 《Journal of virology》1987,61(7):2245-2252
Reconstituted influenza virus envelopes were obtained following solubilization of intact virions with Triton X-100. Quantitative determination revealed that the hemolytic and fusogenic activities of the envelopes prepared by the present method were close or identical to those expressed by intact virions. Hemolysis as well as virus-membrane fusion occurred only at low pH values, while both activities were negligible at neutral pH values. Fusion of intact virions as well as reconstituted envelopes with erythrocyte membranes--and also with liposomes--was determined by the use of fluorescently labeled viral envelopes and fluorescence dequenching measurements. Fusion with liposomes did not require the presence of specific virus receptors, namely sialoglycolipids. Under hypotonic conditions, influenza virions or their reconstituted envelopes were able to fuse with erythrocyte membranes from which virus receptors had been removed by treatment with neuraminidase and pronase. Inactivated intact virions or reconstituted envelopes, namely, envelopes treated with hydroxylamine or glutaraldehyde or incubated at low pH or 85 degrees C, neither caused hemolysis nor possessed fusogenic activity. Fluorescence dequenching measurements showed that only fusion with liposomes composed of neutral phospholipids and containing cholesterol reflected the viral fusogenic activity needed for infection.  相似文献   

10.
11.
Reconstitution and fusogenic properties of Sendai virus envelopes   总被引:1,自引:0,他引:1  
Sendai virus membranes were reconstituted by detergent dialysis, using the non-ionic detergents Triton X-100 and octyl glucoside. Membrane reassembly was determined by measuring the surface-density-dependent efficiency of resonance energy transfer between two fluorescent phospholipid analogues, which were co-reconstituted with the viral envelopes. The functional incorporation of the viral proteins was established by monitoring the ability of the reconstitution products to fuse with erythrocyte membranes, utilizing assays based on either resonance energy transfer or on relief of fluorescence selfquenching. The persistent adherence of residual Triton X-100 with the reconstituted membrane was revealed by an artificial detergent-effect on the resonance energy transfer efficiency and the occurrence of hemolysis of human erythrocytes under conditions where fusion does not occur. Properly reconstituted Sendai virus envelopes were obtained with octyl glucoside. The fusion activity of the viral envelopes was dependent on the initial concentration of octyl glucoside used to disrupt the virus and the rate of detergent removal. Rapid removal of detergent by dialysis against large volumes of dialysis buffer (ratio 1:850) or by gel filtration produced reconstituted membranes capable of inducing hemagglutination but significant fusion activity was not detected. By decreasing the volume ratio of dialysate versus dialysis buffer to 1:250 or 1:25, fusogenic viral envelopes were obtained. The initial fusion kinetics of the reconstituted viral membrane and the parent virus were different in that both the onset and the initial rate of fusion of the reconstituted membranes were faster, whereas the extents to which both particles eventually fused with the target membrane were similar. The differences in the initial fusion kinetics lead us to suggest that the details of the fusion mechanism between Sendai virus and the target membrane involve factors other than the mere presence of glycoproteins F and HN in the viral bilayer. Finally, the results also indicate that determination of the viral fusion activity in a direct manner, rather than by an indirect assay, such as hemolysis, is imperative for a proper evaluation of the functional properties retained upon viral reconstitution.  相似文献   

12.
Phaeocystis globosa Scherffel, an organism that causes harmful algal blooms, is a genus of the family Prymnesiophyta (or Haptophyta) with eurythermal and euryhaline characteristics. P. globosa has been confirmed to produce hemolytic substances, which are a mixture of liposaccharides. In the present study, the hemolytic properties of extract of P. globosa are analyzed further. The effects of temperature, pH,different divalent cations, and membrane lipids on extract-induced hemolysis are discussed, as is the possible hemolytic mechanism. The results of the present study showed that the hemolytic activity of the extract was approximately 127.1 hemolytic units (HU)/L. The hemolytic reaction became fastest and a 50% decrease in absorbance was induced at 30 min at 37℃, and at pH 7.0; Hg^2 was the strongest inhibitor of the hemolysis compared with the other divalent cations and many membrane lipids, except for phosphatidic acid, inhibited the hemolytic activity to different degrees. These results suggest that the toxin may make pores in the surface of red blood cells and that Hg^2 either combines with the hemolysin or closes the pores,hence inhibiting its further hemolytic reaction. The toxin probably has no specific membrane receptor in the red blood cell membrane.  相似文献   

13.
We have investigated the pH-dependent fusion activity of influenza virus toward human erythrocyte ghosts, utilizing a recently developed fluorescence assay, which permits continuous monitoring of the fusion reaction. The rate of fusion is negligible at neutral pH but shows a sharp increase at pH values just below 5.5. This pH dependence profile closely corresponds to that of virus-induced hemolysis. Fusion is rapidly inactivated by a low-pH preincubation of the virus alone either at 37 or at 0 degrees C. The presence of ghosts during this low-pH preincubation, carried out at 0 degree C under which condition there is hardly any fusion, causes a significant protection of the viral fusion activity against inactivation. Fusion initiated at low pH can be arrested instantaneously by readjustment of the pH to neutral. The characteristics of fusion of influenza virus with ghosts deviate from those of fusion with cardiolipin liposomes (Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J. (1985) Biochemistry 24, 3107-3113). Fusion with ghosts is consistent with a requirement of the well-documented pH-dependent conformational change in the viral hemagglutinin, whereas fusion with cardiolipin liposomes does not exhibit a strict dependence on the conformational change. Rather, the negative surface charge on the liposomes plays a critical role, as zwitterionic liposomes containing gangliosides show fusion behavior similar to that of erythrocyte ghosts.  相似文献   

14.
A M Haywood  B P Boyer 《Biochemistry》1982,21(24):6041-6046
The conditions that optimize Sendai virus membrane fusion with liposomes have been studied. No fusion occurs in the absence of ganglioside receptors. Maximum fusion occurs when the molar ratio of ganglioside GD1a to phospholipid is 0.02 or greater. The amount of fusion at 37 degrees C increases with time up to at least 6.5 h. The rate of fusion increases from the lowest temperature tested, 10 degrees C, to 40 degrees C. Above 43 degrees C the amount of fusion decreases because of thermal inactivation of the viral proteins. There is a broad pH maximum between pH 7.5 and pH 9.0. At both ends of the pH range the amount of fusion increases and exceeds that found in the physiologic pH range. Neither ethylenediaminetetraacetic acid nor Ca2+ changes the amount of membrane fusion. The optimal conditions for membrane fusion of Sendai virus membranes with liposomes are the same as the optimal conditions for fusion with host cells and with red blood cells. Since the liposomes contain no proteins, the optimal conditions for Sendai virus membrane fusion must be determined by the viral proteins and be mostly independent of the nature or presence of the host proteins.  相似文献   

15.
Phaeocystis globosa Scherffel, an organism that causes harmful algal blooms, is a genus of the family Prymnesiophyta (or Haptophyta) with eurythermal and euryhaline characteristics. P. globosa has been confirmed to produce hemolytic substances, which are a mixture of liposaccharides. In the present study, the hemolytic properties of extract ofP. globosa are analyzed further. The effects of temperature, pH,different divalent cations, and membrane lipids on extract-induced hemolysis are discussed, as is the possible hemolytic mechanism. The results of the present study showed that the hemolytic activity of the extract was approximately 127.1 hemolytic units (HU)/L. The hemolytic reaction became fastest and a 50% decrease in absorbance was induced at 30 min at 37 ℃, and at pH 7.0; Hg2 was the strongest inhibitor of the hemolysis compared with the other divalent cations and many membrane lipids, except for phosphatidic acid, inhibited the hemolytic activity to different degrees. These results suggest that the toxin may make pores in the surface of red blood cells and that Hg2 either combines with the hemolysin or closes the pores,hence inhibiting its further hemolytic reaction. The toxin probably has no specific membrane receptor in the red blood cell membrane.  相似文献   

16.
Agglutinates of native chicken erythrocytes caused by influenza virus A/Aichi/2/68 (H3N2) at 4 degrees C were potently fused and lysed at low pH (optimum pH 5.3) at 37 degrees C. Exogenous gangliosides GM3 (Sia alpha 2-3Gal beta 1-4Glc beta 1-ceramide) and GM2 (GalNAc beta 1-4(Sia alpha 2-3)-Gal beta 1-4Glc beta 1-ceramide) were integrated into the membranes of chicken asialoerythrocytes within 5-min incubation at 37 degrees C. We found that the incorporation of ganglioside GM3 containing N-acetylneuraminic acid into asialoerythrocytes restored the biological responsiveness to the virus as established by agglutination at 4 degrees C and fusion and hemolysis at 37 degrees C at pH 5.3. Biological responsiveness of GM3-NeuAc-erythrocytes to the virus was considerably higher than that of GM3-NeuGc-erythrocytes under the same experimental conditions. Treatment of the GM3-NeuAc-erythrocytes with neuraminidase again resulted in the complete abolishment of the response to the virus. Erythrocytes containing GM2-NeuAc showed no detectable biological responses toward the virus. The above results indicate that the hemagglutinin of influenza virus A/Aichi/2/68 (H3N2) recognizes the sialyloligosaccharide chain of ganglioside GM3 as its receptor which mediates the adsorption and fusion process on the virus entry into the host cells and has more preferential specificity for binding to N-acetylneuraminic acid-containing GM3 than that to N-glycolyl type in the target cell membranes.  相似文献   

17.
Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 degrees C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 degrees C. The mechanism of this phenomenon is not understood. PlcHR 2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, that is the prototype of a new phosphatase superfamily, induces hot-cold hemolysis. We found that the sphingomyelinase, but not the phospholipase C activity, is essential for hot-cold hemolysis because the phenomenon occurs not only in human erythrocytes that contain both phosphatidylcholine (PC) and sphingomyelin (SM) but also in goat erythrocytes, which lack PC. However, in horse erythrocytes, with a large proportion of PC and almost no SM, hot-cold hemolysis induced by PlcHR 2 is not observed. Fluorescence microscopy observations confirm the formation of ceramide-enriched domains as a result of PlcHR 2 activity. After cooling down to 4 degrees C, the erythrocyte ghost membranes arising from hemolysis contain large, ceramide-rich domains. We suggest that formation of these rigid domains in the originally flexible cell makes it fragile, thus highly susceptible to hemolysis. We also interpret the slow hemolysis observed at 37 degrees C as a phenomenon of gradual release of aqueous contents, induced by the sphingomyelinase activity, as described by Ruiz-Arguello et al. [(1996) J. Biol. Chem. 271, 26616]. These hypotheses are supported by the fact that ceramidase, which is known to facilitate slow hemolysis at 37 degrees C, actually hinders hot-cold hemolysis. Differential scanning calorimetry of erytrocyte membranes treated with PlcHR 2 demonstrates the presence of ceramide-rich domains that are rigid at 4 degrees C but fluid at 37 degrees C. Ceramidase treatment causes the disapperance of the calorimetric signal assigned to ceramide-rich domains. Finally, in liposomes composed of SM, PC, and cholesterol, which exhibit slow release of aqueous contents at 37 degrees C, addition of 10 mol % ceramide and transfer to 4 degrees C cause a large increase in the rate of solute efflux.  相似文献   

18.
Non-esterified long-chain fatty acids reduce the extent of hypotonic hemolysis at a certain low concentration range but cause hemolysis at higher concentrations. This biphasic behavior was investigated at different temperatures (0-37 degrees C) for lauric (12:0), myristic (14:0), palmitoleic (16:1), oleic (cis-18:1) and elaidic (trans-18:1) acids. The results are summarized as follows: (A) the fatty acids examined exhibit a high degree of specificity in their thermotropic behavior; (B) oleic acid protects against hypotonic hemolysis even at the highest concentrations, up to 15 degrees C, when it becomes hemolytic, but only in a limited concentration range; (C) elaidic acid does not affect the osmotic stability of erythrocytes up to 20 degrees C, when it starts protecting: above 30 degrees C, it becomes hemolytic at the highest concentrations; (D) palmitoleic acid is an excellent protecting agent at all temperatures in a certain concentration range, becoming hemolytic at higher concentrations; (E) lauric acid protects up to 30 degrees C and becomes hemolytic only above this temperature; (F) myristic acid exhibits an extremely unusual behavior at 30 and 37 degrees C by having alternating concentration ranges of protecting and hemolytic effects; (G) there is a common critical temperature for hemolysis at 30 degrees C for saturated and trans-unsaturated fatty acids; (H) the initial slope of Arrhenius plots of percent hemolysis at the concentration of maximum protection is negative for cis-unsaturated fatty acids and positive for saturated and trans-unsaturated fatty acids.  相似文献   

19.
Exposure of influenza virus to an acidic environment, which is known to be required for viral fusion and hemolysis, has recently been shown to induce a conformational change in the hemagglutinin molecule. In the present study, we examined the effects of acid incubation on the antigenicity, biological activity, and morphology of influenza virus A/PR/8/34 (H1N1). Incubation of PR8 virus at pH 5 in the absence of erythrocytes resulted in a rapid and irreversible loss of viral hemolytic activity and infectivity. Apart from a less distinct appearance of the viral surface projections and slight damage to the envelope structure, acid incubation did not result in gross morphological changes in the viral architecture. The acid-induced change could be detected in the form of greatly increased or decreased binding of many monoclonal antibodies directed to each of the four major antigenic regions of the hemagglutinin. Triggering of viral hemolytic activity and antigenic alterations was similarly pH dependent. In addition, the different pH dependencies of egg-grown and trypsin-treated MDCK-grown viruses coincided with an analogous pH dependence of the antigenic alterations that were observed with these viruses. These observations are compatible with the idea that some of the anti-hemagglutinin antibodies detect conformational changes in the hemagglutinin which are required for the initiation of fusion and hemolysis.  相似文献   

20.
K Poole  V Braun 《Journal of bacteriology》1988,170(11):5146-5152
Log-phase cells of Serratia marcescens cultured at 30 degrees C were approximately 10-fold more hemolytic than those grown at 37 degrees C. By using a cloned gene fusion of the promoter-proximal part of the hemolysin gene (shlA) to the Escherichia coli alkaline phosphatase gene (phoA), hemolysin gene expression as a function of alkaline phosphatase activity was measured at 30 and 37 degrees C. No difference in alkaline phosphatase activity was observed as a function of growth temperature, although more hemolysin was detectable immunologically in whole-cell extracts of cells grown at 30 degrees C. The influence of temperature was, however, growth phase dependent, because the hemolytic activities of cells cultured to early log phase at 30 and 37 degrees C were comparable. Given the outer membrane location of the hemolysin, lipopolysaccharide (LPS) was examined as a candidate for mediating the temperature effect on hemolytic activity. Silver staining of LPS in polyacrylamide gels revealed a shift towards shorter O-antigen molecules at 37 degrees C relative to 30 degrees C. Moreover, there was less binding of O-antigen-specific bacteriophage to S. marcescens with increasing growth temperature, a finding consistent with temperature-mediated changes in LPS structure. Smooth strains of S. marcescens were 20- to 30-fold more hemolytic than rough derivatives, a result confirming that changes in LPS structure can influence hemolytic activity. The alkaline phosphatase activity of rough strains harboring the shlA-phoA fusion was threefold lower than that of smooth strains harboring the fusion plasmids, a result consistent with a decrease in hemolysin gene expression in rough strains. The absence of a similar effect of temperature on gene expression may be related to less-marked changes in LPS structure as a function of temperature compared with a smooth-to-rough mutational change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号