首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Popma  F. Bongers 《Oecologia》1988,75(4):625-632
Summary Growth and morphology of seedlings of ten tropical rain forest species were studied at Los Tuxtlas, Mexico. Seedlings were grown in three environmental conditions: the shaded forest understorey (FU, receiving 0.9–2.3% of the daily photosynthetic photon flux, PF, above the canopy), a small canopy gap of approx. 50 m2 (SG, receiving 2.1–6.1% of daily PF), and a large canopy gap of approx. 500 m2 (LG, receiving 38.6–53.4% of daily PF). The growth of all species was enhanced in gaps, and in LG the effect was stronger than in SG. Plants grown in LG had a sunplant morphology, with a high root-shoot ratio (R/S), a high specific leaf weight (SLW) and a low leaf area ratio (LAR). Plants grown in SG or FU showed a shade-plant morphology, with a low R/S, a low SLW and a high LAR. Growth responses varied from species unable to grow in the shade but with strong growth in the sun, to species with relatively high growth rates in both shade and sun conditions. Shade tolerant species were able to grow in the shade because of a relatively high unit leaf rate. The pioneerCecropia had a high growth rate in LG because of a high LAR. Most species showed a complex growth response in which they resembled the shade intolerant extreme in some aspects of the response, and the shade tolerant extreme in other aspects.  相似文献   

2.
To clarify the small-scale heterogeneity of light regimes in a rain forest, photosynthetic photon flux density (PFD) was measured at 1-min intervals during six days at 12 microsites in each of two plots, a small gap and an understory in Pasoh Forest Reserve, Peninsular Malaysia. Frequency distribution of microsite PFD was unimodal with the peak value between 16 and 32 μmol/m2/sec in the small gap, but between 8 and 16 μmol/m2/sec in the understory. In the small gap, PFD was more variable among microsites; total daily PFD and daily sunfleck PFD exceeding 10 μmol/ m2/sec tended to be higher (P <0.05; t-test) compared to those in the understory. Sunfleck PFD exceeding 50 μmol/ m2/sec, however, showed no difference between the two plots. Diffuse PFD transmittance, defined as the ratio of PFD in the forest to that measured at 43 m above ground during the periods 0800-0810 and 1750-1800 h, was significantly higher in the small gap than in the understory plot. Diffuse PFD transmittance was also positively correlated with microsite total daily PFD. To examine the effects of the subtle heterogeneity of light regimes on leaf carbon gain, we simulated carbon gain by sun and shade leaves in a typical shade-tolerant species, Brosimum aticastrum Sw. (Moraceae). Despite the similarity in total daily PFD, total daily carbon gain was considerably higher in the gap than in the understory for both sun and shade leaves. This study suggests that frequency distribution of PFD is critical in describing microsite PFD regimes and determining leaf carbon gain in the tropical forest floor.  相似文献   

3.
马尾松人工林乔木层植物凋落物的分解对林地养分平衡和系统物质循环具有重要意义,并可能受不同大小林窗下微环境差异的影响。采用凋落物袋分解法,以马尾松(Pinus massoniana)人工林人为砍伐形成的7个不同大小林窗(G1:100 m~2、G2:225 m~2、G3:400 m~2、C4:625 m~2、G5:900 m~2、G6:1225m~2、G7:1600 m~2)为研究对象,林下(G0)为对照,研究林窗大小对红椿(Toona ciliata)、桢楠(Phoebe zhennan)、香樟(Cinnamomum camphora)和马尾松4种乡土树种凋落叶质量损失及养分释放的影响。结果显示:1)林窗大小(G0-G7)显著影响林窗中心放置的红椿和桢楠凋落叶N和P释放率、香樟凋落叶失重率和N、P、K释放率以及马尾松凋落叶P和K释放率。相对于林下,中小型林窗(G1-G4)的凋落叶失重率和N、P释放率明显较大,而大型林窗(G6-G7)的凋落叶K释放率明显较大。2)林窗内放置位置显著影响红椿、桢楠和马尾松凋落叶的K释放率及香樟凋落叶的P释放率。红椿和桢楠的凋落叶K释放率从林窗中心到边缘显著减少,而马尾松凋落叶K释放率及香樟P释放率从林窗中心到边缘显著增加。3)4种凋落叶类型中红椿凋落叶分解最快,其分解50%和95%所需时间分别为5.29和23.14个月。上述结果表明,林窗大小和林窗内位置对凋落物质量损失及其养分释放具有显著影响,但影响大小及趋势随物种初始基质质量的差异具有明显变化,研究结果为亚热带低山丘陵区马尾松人工低效林的科学经营及管理提高了一定的科学依据。  相似文献   

4.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

5.
To detect the factors that affect sapling species composition in gaps, we investigated 55 gaps in an old-growth temperate deciduous forest in Ogawa Forest Reserve, central Japan. Gap size, gap age, gap maker species, topographic location, adult tree composition around gaps, and saplings of tree species growing in the gaps were censused. For gaps 5 m2, mean gap size was 70 m2 and the maximum was 330 m2. Estimated ages of gaps had a tendency to be concentrated in particular periods relating to strong wind records in the past. The sapling composition in gaps was highly and significantly correlated to that under closed canopy, indicating the importance of advance regeneration in this forest. However, some species showed significant occurrence biases in gaps or under closed canopy, suggesting differences in shade tolerance. The result of MANOVA showed that gap size and topography were important factors in determining the sapling composition in gaps. Species of gap makers affected the sapling composition indirectly by influencing gap size. The existence of parent trees around gaps had effects on sapling densities of several species. Gap age did not have clear influences on sapling composition. Variations in gap size and topography were considered as important factors that contribute to maintenance of species diversity in this forest.  相似文献   

6.
Forest community dynamics were studied for 4 years in a 6 ha permanent plot of species rich, old-growth, temperate deciduous forest in Ogawa Forest Reserve, central Japan. The gap formation rate, recruitment, mortality, gain and loss rate in basal area during 4 years were 42 m2 ha–1 yr–1, 1.74% yr–1, 1.19% yr–1, 1.12% yr–1 and 0.88% yr–1, respectively. The turnover time calculated from them ranged from 58 to 240 years. Both the mortality and mortality factors were size dependent; trees in middle size class had smallest mortality, and the proportion of the trees killed by disturbances increased with size. Gap creations were concentrated in a particular year, suggesting a large heterogeneity in time. Spatial distribution of recruited trees were biassed to the old gaps (older than 4 years), especially that of the species with Bell-shaped dbh distribution (shade intolerant) strongly associated with the gaps. Recruitment in tree stems and the loss of basal area, thus had the larger variability than mortality of stems and this forest, and the species with L-shaped dbh distribution seemed to going to increase the importance in the future if the present trend continues to be held. The turnover time of population is positively correlated with the maximum dbh size of the species, indicating the slow change of the population of large sized species.  相似文献   

7.
Photoinhibition of photosynthesis was monitored by means of chlorophyll a fluorescence in leaves of plants growing in 60–80 m2 light gaps in a moist tropical lowland forest located on Barro Colorado Island in central Panama. In these forest gaps, photon flux density was low (less than 100 μmol photons m?2 s?1) during most of the day, but increased on clear days to 1.7-1.8 mmol photons m?2 s?1 for 1–2 h during midday. Nine species representing different taxa and life-forms were examined. Leaves of all species exhibited substantial photoinhibition in situ during high light exposure, as manifested by a decrease in the ratio of variable to maximum fluorescence emission, FV/FM. Recovery (reversion of fluorescence quenching) took place in the shade following high light exposure. The major part of recovery occurred in a fast phase within about 1 h after the high light period. A slow phase of recovery proceeded for another 4–5 h until sunset. After 30–60 min of recovery in the shade, calculated rates of PSII electron transport remained significantly (5–15%) reduced in comparison to rates obtained prior to high light exposure; after about 2 h of recovery, inhibition was negligible. All species responded to the high light periods and following shade periods in a very similar manner. It is concluded that photoinhibition and recovery exhibited by these gap leaves reflect a dynamic regulatory mechanism of thermal energy dissipation that allows plants of different life-forms to cope with periods of high light in tropical forest gaps.  相似文献   

8.
Abstract. We conducted a study in the laurel forest of Tenerife (Canary Islands, Spain) to describe the characteristics of natural gaps and to assess the role of treefall gaps in forest dynamics. Very little is left of the natural laurel forest with i.a. Laurus azorica, Ilex canariensis and Prunus lusitanica. We looked for treefall gaps in 80 randomly located 2500 m2 plots. These plots represented ca. 1% of the remaining and protected laurel forest of Tenerife. We recorded the characteristics of the species causing the gaps, gap architecture and gap age in all observed gaps larger than 10 m2. We inventoried the regeneration in each gap and in a neighbouring control plot with the same topography. Large gaps (>75 m2) were not common in the laurel forest. The absence of large gaps could be due to the physiognomy of the vegetation, the mild weather or the rarity of disturbances. Instead of forming gaps, many trees decompose in place and branches from neighbouring trees and suckers from the decomposed trees occupy the free space. Also, the high rate of asexual regeneration could contribute to the fast closing of the gap. The number of gaps created by Prunus lusitanica was higher than expected (based on canopy composition) while Ilex canariensis and Laurus azorica created fewer gaps. In this evergreen forest, differences between gap and non-gap conditions are not as distinct as in other forest types. Only 0.4% of the canopy is in the gap phase (0.6% including gaps smaller than 10m2). No differences were found in patterns of regeneration between gap and non-gap phases in the forest. Gaps do not explain the persistence of pioneer species in the laurel forest.  相似文献   

9.
以适宜不同栽培条件的3个甜瓜品种为材料,研究了遮荫对其光合色素含量、净光合速率及比叶重等叶片特性的影响。结果表明:与正常光照相比,遮光处理能诱使甜瓜叶片叶绿素和类胡萝卜素含量显著提高,叶绿素a/b显著降低。全光照条件下,3个甜瓜品种的净光合速率日变化曲线均呈双峰型,有明显的"光合午休"现象,而在遮荫条件下则呈单峰曲线变化,且光合峰值出现的时间比全光照下推迟;遮光条件下甜瓜叶片气孔导度日变化曲线与其净光合速率日变化类似。3个品种间比叶重在全光照条件下差异不显著,但遮荫显著降低了壮龄叶片的比叶重,且遮荫强度越重,比叶重越小;品种‘黄河蜜3号’壮龄叶的比叶重降幅(31.83%)显著大于‘银帝’(27.22%)和‘玉金香’(26.01%)。可见,遮荫降低了甜瓜叶片的净光合速率和功能叶片的比叶重,植株通过增加自身叶片光合色素含量以增强对环境的适应性,缓解遮荫对其的影响,品种‘银帝’表现出较强的耐弱光性。  相似文献   

10.
油樟幼苗对马尾松林窗面积的光合响应特征   总被引:2,自引:0,他引:2  
刘辉  宋会兴  杨万勤  张健 《生态学报》2015,35(12):4089-4096
为了解马尾松人工林窗对伴生树种的影响,为马尾松人工纯林的团块状混交提供科学依据,研究了10 m×10 m(T1)、15 m×15 m(T2)、20 m×20 m(T3)、25 m×25 m(T4)、30 m×30 m(T5)、35 m×35 m(T6)和40 m×40 m(T7)马尾松人工林窗中油樟(Cinnamomum longepaniculatum)幼苗叶片形态和光合生理特征的变化,探讨马尾松林窗斑块对混生树种生长的影响。结果表明:1)林窗面积低于20 m×20 m时,油樟幼苗叶片最大净光合速率显著低于旷地对照;2)叶片比叶重随着林窗面积的增大显著升高;林窗内油樟幼苗叶氮含量在小林窗中(10 m×10 m)显著低于旷地对照,但在大林窗中(如20 m×20 m)显著高于对照;林窗内幼苗叶磷含量则与旷地无显著性差异;3)叶氮在光合组分中的总分配系数随着林窗面积的增加而增大,其中叶氮在羧化组分中的分配系数升高尤为明显,而捕光组分的分配系数在林窗面积10 m×10 m—20 m×20 m范围内随林窗面积的增加而显著降低。可见,当马尾松林窗面积低于20 m×20 m时,林窗环境会显著影响油樟幼苗的光合能力,油樟幼苗可以通过调节比叶面积、叶氮含量以及叶氮在光合组分中的分配等形态、生理适应特征来适应林窗环境的变化。  相似文献   

11.
Osada N  Takeda H  Kitajima K  Pearcy RW 《Oecologia》2003,137(2):181-187
For a shade-tolerant SE Asian tropical tree, Elateriospermum tapos (Euphorbiaceae), we studied field-established saplings in gaps and the shaded understory to test the hypothesis that differences in leaf demography and leaf life span under contrasting light regimes should be functionally correlated with architecture, self-shading and nitrogen distribution within the sapling crown. Rates of leaf production and net leaf gain were greater for saplings in gaps than those in the understory. Median leaf life span was approximately 26 months in the gap saplings, while it was estimated to be greater than 38 months in the understory saplings. Consequently, gap saplings had a greater standing leaf number and experienced greater degrees of self-shading than understory saplings. Light availability at individual leaves, estimated by a combination of canopy photos and a three-dimensional architecture model, were negatively correlated with leaf age in gap saplings but not so in understory saplings. Leaf nitrogen content per unit area (Narea) was influenced more by light availability than by leaf age in the gap saplings. In contrast, in understory saplings, Narea was neither correlated with light availability nor with leaf age, and did not decrease significantly before 38 months in leaf age. We conclude that saplings of this shade-tolerant species apparently prolong their leaf life span in the shaded understory through slower rates of leaf production, lower standing number of leaves and lower degrees of self shading than in gap, and that the rate of decline of Narea with leaf age depends on architecture and self-shading regimes that respond to changes in light regimes.  相似文献   

12.
Leaf dynamics and profitability in wild strawberries   总被引:1,自引:0,他引:1  
Summary Leaf dynamics and carbon gain were evaluated for two species of wild strawberry, Fragaria virginiana and F. vesca. Five populations on sites representing a gradient of successional regrowth near Ithaca, N.Y., U.S.A., were studied for two or three years each. A computer-based model of plant growth and CO2 exchange combined field studies of leaf biomass dynamics with previously-determined gas exchange rates to estimate carbon balances of leaves and whole plants in different environments.Leaves were produced throughout the growing season, although there was usually a decline in rate of leaf-production in mid-summer. Leaves produced in late spring had the largest area and longest lifespan (except for overwintering leaves produced in the fall). Specific Leaf Weight (SLW) varied little with time of leaf production, but differed greatly among populations; SLW increased with amount of light received in each habitat. The population in the most open habitat had the least seasonal variation in all leaf characters. F. vesca produced lighter, longer-lived leaves than F. virginiana.Simulations showed that age had the largest effect on leaf carbon gain in high-light environments; water stress and temperature had lesser effects. Leaf carbon gain in lowlight environments was relatively unaffected by age and environmental factors other than light. Leaves in high-light environments had the greatest lifetime profit and the greatest ratio of profit to cost. Increasing lifespan by 1/3 increased profit by 80% in low-light leaves and 50% in high-light leaves. Increasing the number of days during which the leaf had the potential to exhibit high photosynthetic rate in response to high light led to little change in profit of low-light leaves while increasing profit of high-light leaves by 49%.  相似文献   

13.
Filella  Iolanda  Peñuelas  Josep 《Plant Ecology》1999,145(1):157-165
We studied the variations in different physiological parameters associated with UV-B radiation defense: UV-B radiation absorbance, UV-visible spectral reflectance, carotenoids concentration, leaf thickness, SLW (specific leaf weigth) and trichome density in Quercus ilex growing at 200 and 1200 m and Rhododendron ferrugineum growing at 2200 m. We examined the role of these parameters as protection mechanisms in an altitudinal gradient of increasing UV radiation in northern Catalonia and in sun and shade leaves. The concentration of UV-B radiation absorbing pigments was 15% higher in sun leaves of Q. ilex at 1200 m than in those from 200 m altitude. Sun leaves of R. ferrugineum presented concentrations three times higher than those of Q. ilex. Reflectance ranged between 5% (in the region 300–400 nm) and 12% (in the region 280–300 nm). The variation of reflectance with altitude followed an inverse trend respect to absorbance in the 280–300 nm region, with higher values the lower the altitude, but in the 300–400 nm region, reflectance of the lower site was the lowest. In both species and altitudes sun leaves presented higher concentrations of UV-B radiation absorbing pigments and UV reflectance than shade leaves. Quercus ilex trees of the higher location presented higher NDPI (Normalized Difference Pigment Reflectance Index) values, indicating higher carotenoids/chlorophyll a ratio. Actual measurements of carotenoid/chlorophyll a ratio confirmed this pattern. The photochemical reflectance index (PRI) presented higher values the higher the location indicating lower photosynthetic radiation-use efficiency. Specific leaf weight (SLW) and leaf thickness were larger in Q. ilex trees of higher location than in those of lower location. In both sites, sun leaves also presented larger SLW values than shade leaves. Adaxial leaf hair density in sun leaves was significantlly higher in the lower location. UV absorption and linked morphological traits (SLW, leaf thickness measured in Q. ilex) presented the larger differences among studied plants at different altitudes and seem to be the dominant UV protecting mechanisms.  相似文献   

14.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

15.
Temporal and spatial patterns of specific leaf weight (SLW, g/m2) were determined for deciduous hardwood tree species in natural habitats in northern lower Michigan to evaluate the utility of SLW as an index of leaf photosynthetic capacity. No significant diurnal changes in SLW were found. Specific leaf weight decreased and then increased during leaf expansion in the spring. Most species, especially those located in the understory, then had relatively constant SLW for most of the growing season, followed by a decline in SLW during autumn. Specific leaf weight decreased exponentially down through the canopy with increasing cumulative leaf area index. Red oak (Quercus rubra), paper birch (Betula papyrifera), bigtooth aspen (Populus grandidentata), red maple (Acer rubrum), sugar maple (A. saccharum), and beech (Fagus grandifolia) generally had successively lower SLW, for leaves at any one level in the canopy. On a given site, comparisons between years and comparisons of leaves growing within 35 cm of each other showed that differences in SLW among species were not due solely to microenvironmental effects on SLW. Bigtooth aspen, red oak, and red maple on lower-fertility sites had lower SLW than the same species on higher-fertility sites. Maximum CO2 exchange rate, measured at light-saturation in ambient CO2 and leaf temperatures of 20 to 25 C, increased with SLW. Photosynthetic capacities of species ranked by SLW in a shaded habitat suggest that red oak, red maple, sugar maple, and beech are successively better adapted to shady conditions.  相似文献   

16.
The study of gap dynamics and the effects of gaps on diversity has been at the center of tropical ecology for decades. While most studies have focused on the responses of plant species and communities to gap formation, in this study, we consider the effects of treefall gap disturbances on leaf litter ant assemblages in a Neotropical montane cloud forest. We sampled leaf litter ant assemblages and estimated a suite of abiotic parameters in 12 large (>80‐m2) treefall gaps across a chronosequence and in 12 paired adjacent intact forest sites in the Monteverde Cloud Forest Preserve in Costa Rica. No species were more common in gaps than in intact forests, and in fact, species that were common in gaps were also among the most common in forests. The Chao2 estimate of species richness, however, was higher in gap sites than in intact forest sites. In addition, ant assemblages in gap sites did not become more similar to those in adjacent intact sites as gaps aged. In contrast to other studies, our work demonstrates that ant assemblages in the Monteverde Cloud Forest Preserve are weakly affected by the formation of treefall gaps. Together, these results indicate that treefall gap dynamics probably play little role in promoting ant diversity at more regional scales, or coexistence among species at more local scales.  相似文献   

17.

Background and Aims

A long-running debate centres on whether shade tolerance of tree seedlings is mainly a function of traits maximizing net carbon gain in low light, or of traits minimizing carbon loss. To test these alternatives, leaf display, light-interception efficiency, and simulated net daily carbon gain of juvenile temperate evergreens of differing shade tolerance were measured, and how these variables are influenced by ontogeny was queried.

Methods

The biomass distribution of juveniles (17–740 mm tall) of seven temperate rainforest evergreens growing in low (approx. 4 %) light in the understorey of a second-growth stand was quantified. Daytime and night-time gas exchange rates of leaves were also determined, and crown architecture was recorded digitally. YPLANT was used to model light interception and carbon gain.

Results

An index of species shade tolerance correlated closely with photosynthetic capacities and respiration rates per unit mass of leaves, but only weakly with respiration per unit area. Accumulation of many leaf cohorts by shade-tolerant species meant that their ratios of foliage area to biomass (LAR) decreased more gradually with ontogeny than those of light-demanders, but also increased self-shading; this depressed the foliage silhouette-to-area ratio (STAR), which was used as an index of light-interception efficiency. As a result, displayed leaf area ratio (LARd = LAR × STAR) of large seedlings was not related to species shade tolerance. Self-shading also caused simulated net daily carbon assimilation rates of shade-tolerant species to decrease with ontogeny, leading to a negative correlation of shade tolerance with net daily carbon gain of large (500 mm tall) seedlings in the understorey.

Conclusions

The results suggest that efficiency of energy capture is not an important correlate of shade tolerance in temperate rainforest evergreens. Ontogenetic increases in self-shading largely nullify the potential carbon gain advantages expected to result from low respiration rates and long leaf lifespans in shade-tolerant evergreens. The main advantage of their long-lived leaves is probably in reducing the costs of crown maintenance.  相似文献   

18.
The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.  相似文献   

19.
Leaf spacing and aboveground growth were monitored in saplings of ten species in a range of light environments in a Panamanian lowland humid forest. One- to 2-m-tall individuals of the chosen species had intermediate to large leaves on stems with few or no branches. Saplings in high light environments grew faster in height and produced more biomass per unit leaf area than shaded saplings for all species. These growth responses involved morphological plasticity with greater extension per unit biomass increment increasing the height growth rate of gap-grown saplings and greater biomass allocation to leaves decreasing the whole plant light compensation point in shade. The relative performance of the species also varied across the light gradient and was related to differences in leaf lifespan and specific leaf mass. Light-demanding species grew as rapidly in shade as shade-tolerant species, but the shorter leaf lifespan of the former necessitates higher production rates to maintain a given leaf area, largely excluding light-demanders from shaded understory locations. Height growth rate was positively correlated with leaf spacing for each species, and differences between species in the height growth rate-internode length relationship were related to interspecific differences in specific leaf mass. Thus, sapling growth histories may be inferred from their morphologies.  相似文献   

20.
Abstract. We investigated gap formation and gap replacement in the Knysna Forest. Most (70 %) trees died standing, most gaps were small (median gap size of 35 m2; Gap diameter/Canopy height ratio of 0.24) and were formed by a single dead individual. No large differences were found among the more common species in terms of the size of gaps they created when they died or in the size of gaps they colonised. This is probably because the more common species are shade tolerant and they established before the gaps were formed. Regenerating individuals were almost never found on root mounds in pits or on logs. There were no indications of specific replacement patterns. In contrast, random replacement appears to be the dominant pattern for the more common species. Overall successional patterns suggest that the forest is relatively stable. We conclude that the gaps/non-gaps paradigm is not as useful as a lottery paradigm for explaining gap dynamics in the Knysna Forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号