首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   

2.
Epstein-Barr virus (EBV) glycoprotein gp350/gp220 association with cellular CD21 facilitates virion attachment to B lymphocytes. Membrane fusion requires the additional interaction between virion gp42 and cellular HLA-DR. This binding is thought to catalyze membrane fusion through a further association with the gp85-gp25 (gH-gL) complex. Cell lines expressing CD21 but lacking expression of HLA class II molecules are resistant to infection by a recombinant EBV expressing enhanced green fluorescent protein. Surface expression of HLA-DR, HLA-DP, or HLA-DQ confers susceptibility to EBV infection on resistant cells that express CD21. Therefore, HLA-DP or HLA-DQ can substitute for HLA-DR and serve as a coreceptor in EBV entry.  相似文献   

3.
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.  相似文献   

4.
Epstein-Barr virus (EBV) causes hairy leukoplakia (HL), a benign lesion of oral epithelium that occurs primarily in the setting of human immunodeficiency virus (HIV)-associated immunodeficiency. However, the mechanisms of EBV infection of oral epithelium are poorly understood. Analysis of HL tissues shows a small number of EBV-positive intraepithelial macrophages and dendritic/Langerhans cells. To investigate a role for these cells in spreading EBV to epithelial cells, we used tongue and buccal explants infected ex vivo with EBV. We showed that EBV first infects submucosal CD14(+) monocytes, which then migrate into the epithelium and spread virus to oral epithelial cells, initiating productive viral infection within the terminally differentiated spinosum and granulosum layers. Incubation of EBV-infected monocytes and oral explants with antibodies to CCR2 receptor and monocyte chemotactic protein 1 prevented entry of monocytes into the epithelium and inhibited EBV infection of keratinocytes. B lymphocytes played little part in the spread of EBV to keratinocytes in our explant model. However, cocultivation of EBV-infected B lymphocytes with uninfected monocytes in vitro showed that EBV may spread from B lymphocytes to monocytes. Circulating EBV-positive monocytes were detected in most HIV-infected individuals, consistent with a model in which EBV may be spread from B lymphocytes to monocytes, which then enter the epithelium and initiate productive viral infection of keratinocytes.  相似文献   

5.
6.
Anit-EBNA IgM, a previously unknown antibody, was detected by the antihuman globulin anticomplement immunofluorescence (ACIF) method in serum samples from acute infectious mononucleosis (IM) of Epstein-Barr virus (EBV) origin. The antibody disappears from the serum in some weeks during convalescence. It was absent in anti-EBV=positive sera of healthy donors and in serum samples taken from patients with IM caused by cytomegalo-virus. The antibody appears simultaneously with anti-EBV IgmM and, reaching a lower titre than the latter, its titre curve runs parallel with the anti-EBV IgM curve. Since in acute EBV infections, anti-EBNA IgM always appeared, its presence may serve as an additional evidence of the acuteness of EBV infection. In EBV-seropositive healthy subjects, the bulk of antibodies belongs to the IgG class, non-complement-fixing IgA antibodies occur only sporadically.  相似文献   

7.
In the present study we evaluated the role of IFN-alpha in the generation of dendritic cells (IFN-DCs) with priming activity on CD8(+) T lymphocytes directed against human tumor Ags. A 3-day treatment of monocytes, obtained as adherent PBMCs from HLA-A*0201(+) healthy donors, with IFN-alpha and GM-CSF led to the differentiation of DCs displaying a semimature phenotype, but promptly inducing CD8(+) T cell responses after one in vitro sensitization with peptides derived from melanoma (gp100(209-217) and MART-1/Melan-A(27-35)) and adenocarcinoma (CEA(605-613)) Ags. However, these features were lost when IFN-DCs were generated from immunosorted CD14(+) monocytes. The ability of adherent PBMCs to differentiate into IFN-DCs expressing higher levels of costimulatory molecules and exerting efficient T cell priming capacity was associated with the presence of contaminating NK cells, which underwent phenotypic and functional activation upon IFN-alpha treatment. NK cell boost appeared to be mediated by both direct and indirect (i.e., mediated by IFN-DCs) mechanisms. Experiments performed to prove the role of contaminating NK cells in DC differentiation showed that IFN-DCs generated in the absence of NK were phenotypically less mature and could not efficiently prime antitumor CD8(+) lymphocytes. Reciprocally, IFN-DCs raised from immunosorted CD14(+) monocytes regained their T cell priming activity when NK cells were added to the culture before IFN-alpha and GM-CSF treatment. Together, our data suggest that the ability of IFN-DCs to efficiently prime anti-tumor CD8(+) T lymphocytes relied mostly on the positive cross-talk occurring between DCs and NK cells upon stimulation with IFN-alpha.  相似文献   

8.
Epstein-Barr virus (EBV) is a gammaherpesvirus infecting the majority of the human adult population in the world. TLR2, a member of the Toll-like receptor (TLR) family, has been implicated in the immune responses to different viruses including members of the herpesvirus family, such as human cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. In this report, we demonstrate that infectious and UV-inactivated EBV virions lead to the activation of NF-kappaB through TLR2 using HEK293 cells cotransfected with TLR2-expressing vector along with NF-kappaB-Luc reporter plasmid. NF-kappaB activation in HEK293-TLR2 cells (HEK293 cells transfected with TLR2) by EBV was not enhanced by the presence of CD14. The effect of EBV was abrogated by pretreating HEK293-TLR2 cells with blocking anti-TLR2 antibodies or by preincubating viral particles with neutralizing anti-EBV antibodies 72A1. In addition, EBV infection of primary human monocytes induced the release of MCP-1 (monocyte chemotactic protein 1), and the use of small interfering RNA targeting TLR2 significantly reduced such a chemokine response to EBV. Taken together, these results indicate that TLR2 may be an important pattern recognition receptor in the immune response directed against EBV infection.  相似文献   

9.
The binding of the viral major glycoprotein BLLF1 (gp350/220) to the CD21 cellular receptor is thought to play an essential role during infection of B lymphocytes by the Epstein-Barr virus (EBV). However, since CD21-negative cells have been reported to be infectible with EBV, additional interactions between viral and cellular molecules seem to be probable. Based on a recombinant genomic EBV plasmid, we deleted the gene that encodes the viral glycoprotein BLLF1. We tested the ability of the viral mutant to infect different lymphoid and epithelial cell lines. Primary human B cells, lymphoid cell lines, and nearly all of the epithelial cell lines that are susceptible to wild-type EBV infection could also be successfully infected with the viral mutant in vitro, although the efficiency of infection with BLLF1-negative virus was clearly lower than the one observed with wild-type EBV. Our studies show that the interaction between BLLF1 and CD21 is not absolutely required for the infection of lymphocytes and epithelial cells, indicating that viral molecules other than BLLF1 can mediate the binding of EBV to its target cells. In this context, our results further suggest the hypothesis that additional cellular molecules, apart from CD21, allow virus entry into these cells.  相似文献   

10.
For many years, EBV vaccine development efforts have concentrated on the use of structural Ag, gp350, and have been directed toward Ab-mediated blocking virus attachment to the target cell. There is increasing evidence to suggest that the development of neutralizing Abs in vaccinated animals does not always correlate with protection; nevertheless, it has been postulated that gp350-specific T cell-mediated immune responses may have an effector role in protection. This hypothesis has largely remained untested. In the present study, we demonstrate that CTL from acute infectious mononucleosis patients display strong ex vivo reactivity against the EBV structural Ags, gp85 and gp350. Moreover, long-term follow up studies on infectious mononucleosis-recovered individuals showed that these individuals maintain gp350- and gp85-specific memory CTL, albeit at low levels, in the peripheral blood. These results strongly suggest that CTL specific for EBV structural proteins may play an important role in the control of EBV infection during acute infection. More importantly, we also show that prior immunization of HLA A2/Kb transgenic mice with gp350 and gp85 CTL epitopes induced a strong epitope-specific CTL response and afforded protection against gp85- or gp350-expressing vaccinia virus challenge. These results have important implications for future EBV vaccine design and provides evidence, for the first time, that CTL epitopes from EBV structural proteins may be used for establishing strong antiviral immunity against EBV infection.  相似文献   

11.
Prostaglandin E2 is observed at elevated levels during human immunodeficiency virus (HIV) infection and thus may contribute to the HIV-dependent immunosuppression. The mechanisms responsible for this increase are not understood. Evidence indicates that the viral envelope proteins perturb membrane signaling mediated by the CD4 receptor, suggesting that the free envelope protein and/or the intact virus may be responsible for the increase in prostaglandin E2 levels. In this study, we have used THP-1 human monocytes and THP-1 cells differentiated by 12-O-tetradecanoylphorbol-13-acetate treatment into macrophages to determine if the HIV envelope protein, gp120, or an anti-CD4 receptor antibody stimulates prostaglandin formation by interacting with the CD4 receptor. Incubation of THP-1 cells with OKT4A antibody greatly stimulated the CD4-p56lck receptor complex as estimated by enhanced p56lck autophosphorylation, while the gp120 gave small but significant responses. Monocytic THP-1 cells poorly metabolized arachidonic acid to prostaglandin E2 and thromboxane B2 as measured by high-pressure liquid chromatography analysis. Western blot (immunoblot) and Northern (RNA) blot analyses revealed that unstimulated monocytes expressed little prostaglandin H synthase 1 and 2 (PGHS-1 and -2). Incubation of the monocytes with lipopolysaccharide, OKT4A, or gp120 did not increase the formation of prostaglandins. The expression of PGHS-1 or PGHS-2 was also not increased. Differentiation of the monocytes to macrophages by 12-O-tetradecanoylphorbol-13-acetate treatment resulted in increased expression of PGHS-1 and increased formation of prostaglandins compared with that for the monocytes. Lipopolysaccharide stimulation of the macrophages increased the formation of prostaglandins and increased the expression of PGHS-2 in the macrophages. However, OKT4A or gp120 preparation, at concentrations that stimulated p56lck autophosphorylation, did not enhance the formation of prostaglandins or the expression of PGHS-1 or PGHS-2. OKT4A and gp120 also did not stimulate the release of arachidonic acid, indicating that phospholipase A2 was not activated by the CD4 receptor in either the THP-1 monocytes or macrophages. These results indicate that activation of the CD4-p56lck receptor signal transduction pathway by the HIV envelope protein does not increase prostaglandin formation.  相似文献   

12.
The brains of individuals with lentiviral-associated encephalitis contain an abundance of infected and activated macrophages. It has been hypothesized that encephalitis develops when increased numbers of infected monocytes traffic into the central nervous system (CNS) during the end stages of immunosuppression. The relationships between the infection of brain and systemic macrophages and circulating monocytes and the development of lentiviral encephalitis are unknown. We longitudinally examined the extent of monocyte/macrophage infection in blood and lymph nodes of pigtailed macaques that did or did not develop simian immunodeficiency virus encephalitis (SIVE). Compared to levels in macaques that did not develop SIVE, more ex vivo virus production was detected from monocyte-derived macrophages and nonadherent peripheral blood mononuclear cells (PBMCs) from macaques that did develop SIVE. Prior to death, there was an increase in the number of circulating PBMCs following a rise in cerebrospinal fluid viral load in macaques that did develop SIVE but not in nonencephalitic macaques. At necropsy, macaques with SIVE had more infected macrophages in peripheral organs, with the exception of lymph nodes. T cells and NK cells with cytotoxic potential were more abundant in brains with encephalitis; however, T-cell and NK-cell infiltration in SIVE and human immunodeficiency virus encephalitis was more modest than that observed in classical acute herpes simplex virus encephalitis. These findings support the hypothesis that inherent differences in host systemic and CNS monocyte/macrophage viral production are associated with the development of encephalitis.  相似文献   

13.
In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) and its gp120 protein on interleukin-10 (IL-10) expression in cultured human monocytes/macrophages. Infection of either 1-day monocytes or 7-day monocyte-derived macrophages with HIV-1 strain Ba-L resulted in clear-cut accumulation of IL-10 mRNA at 4 and 24 h. Likewise, treatment of these cells with recombinant gp120 induced IL-10 mRNA expression and caused a marked increase in IL-10 secretion. Monoclonal antibodies to gp120 strongly inhibited recombinant gp120-induced IL-10 secretion by monocytes/macrophages. Moreover, the addition of IL-10 to monocytes/macrophages resulted in a significant inhibition of HIV-1 replication 7 and 14 days after infection. On the whole, these results indicate that HIV-1 (possibly through its gp120 protein) up-regulates IL-10 expression in monocytes/macrophages. We suggest that in vivo production of IL-10 by HIV-primed monocytes/macrophages can play an important role in the early response to HIV-1 infection.  相似文献   

14.
Epstein-Barr virus (EBV) resides as a persistent infection in human leukocyte antigen (HLA) class II+ B lymphocytes and is associated with a number of malignancies. The EBV lytic-phase protein gp42 serves at least two functions: gp42 acts as the coreceptor for viral entry into B cells and hampers T-cell recognition via HLA class II molecules through steric hindrance of T-cell receptor-class II-peptide interactions. Here, we show that gp42 associates with class II molecules at their various stages of maturation, including immature alphabetaIi heterotrimers and mature alphabeta-peptide complexes. When analyzing the biosynthesis and maturation of gp42 in cells stably expressing the viral protein, we found that gp42 occurs in two forms: a full-length type II membrane protein and a truncated soluble form. Soluble gp42 is generated by proteolytic cleavage in the endoplasmic reticulum and is secreted. Soluble gp42 is sufficient to inhibit HLA class II-restricted antigen presentation to T cells. In an almost pure population of Burkitt's lymphoma cells in the EBV lytic cycle, both transmembrane and soluble forms of gp42 are detected. These results imply that soluble gp42 is generated during EBV lytic infection and could contribute to undetected virus production by mediating evasion from T-cell immunity.  相似文献   

15.
Peptide 11389 from CD21-binding region of EBV-gp350/220 protein binds to PBMCs inducing IL-6 expression and inhibiting EBV-binding to PBMCs. In addition, anti-peptide 11389 antibodies recognize EBV-infected cells and inhibit both EBV infection and IL-6 production in PBMCs. We have postulated that native structure stabilization of peptide 11389 sequence can increase its biological activity. The strategy was to modify its sequence to restrict the number of structures that peptide 11389 could acquire in solution (decreasing peptide’s configurational entropy) and to weaken the non-relevant intermolecular interactions (decreasing its hydrophobicity), preserving CD21-interacting residues and structure as displayed in the native protein. Thirteen analog peptides were designed and synthesized; most of them were monomers containing an intra-chain disulfide bridge. Analog peptides 34058, 34060, 34061, 34296, 34298, 34299 and 34300 inhibited EBV invasion of PBMCs. Peptides 34059, 34060, 34295 and 34297 induced IL-6 levels in PBMCs (EC50?=?3.4, 3.3, 0.5, 0.5?μM, respectively) at higher potency than peptide 11389 (EC50?=?5.8?μM). Peptides 34057, 34059, 34060, 34301 and 34302 interacted with anti-EBV antibodies with affinities from 3 to 50 times higher than peptide 11389. Most of analog peptides were highly immunogenic and elicited antibodies that cross-react with EBV. In conclusion, we have designed peptides displaying higher biological activity than peptide 11389.  相似文献   

16.
Complement regulatory protein CD46 is a human cell receptor for measles virus (MV). In this study, we investigated why mouse macrophages expressing human CD46 restricted MV replication and produced higher levels of nitric oxide (NO) in response to MV and gamma interferon (IFN-gamma). Treatment of MV-infected CD46-expressing mouse macrophages with antibodies against IFN-alpha/beta blocked NO production. Antibodies against IFN-alpha/beta also inhibited the augmenting effect of MV on IFN-gamma-induced NO production in CD46-expressing mouse macrophages. These antibodies did not affect NO production induced by IFN-gamma alone. These data suggest that MV enhances NO production in CD46-expressing mouse macrophages through action of IFN-alpha/beta. Mouse macrophages expressing a human CD46 mutant lacking the cytoplasmic domains were highly susceptible to MV. These cells produced much lower levels of NO and IFN-alpha/beta upon infection by MV, suggesting the CD46 cytoplasmic domains enhanced IFN-alpha/beta production. When mouse macrophages expressing tailless human CD46 were exposed to culture medium from MV-infected mouse macrophages expressing intact human CD46, viral protein synthesis and development of cytopathic effects were suppressed. Pretreating the added culture medium with antibodies against IFN-alpha/beta abrogated these antiviral effects. Taken together, these findings suggest that expression of human CD46 in mouse macrophages enhances production of IFN-alpha/beta in response to MV infection, and IFN-alpha/beta synergizes with IFN-gamma to enhance NO production and restrict viral protein synthesis and virus replication. This novel function of human CD46 in mouse macrophages requires the CD46 cytoplasmic domains.  相似文献   

17.
Experiments designed to distinguish virus-specific from non-virus-specific T cells showed that bystander T cells underwent apoptosis and substantial attrition in the wake of a strong T-cell response. Memory CD8 T cells (CD8(+) CD44(hi)) were most affected. During acute viral infection, transgenic T cells that were clearly defined as non-virus specific decreased in number and showed an increase in apoptosis. Also, use of lymphocytic choriomeningitis virus (LCMV) carrier mice, which lack LCMV-specific T cells, showed a significant decline in non-virus-specific memory CD8 T cells that correlated to an increase in apoptosis in response to the proliferation of adoptively transferred virus-specific T cells. Attrition of T cells early during infection correlated with the alpha/beta interferon (IFN-alpha/beta) peak, and the IFN inducer poly(I:C) caused apoptosis and attrition of CD8(+) CD44(hi) T cells in normal mice but not in IFN-alpha/beta receptor-deficient mice. Apoptotic attrition of bystander T cells may make room for the antigen-specific expansion of T cells during infection and may, in part, account for the loss of T-cell memory that occurs when the host undergoes subsequent infections.  相似文献   

18.
The ex vivo antiviral CD8(+) repertoires of 34 human immunodeficiency virus (HIV)-seropositive patients with various CD4(+) T-cell counts and virus loads were analyzed by gamma interferon enzyme-linked immunospot assay, using peptides derived from HIV type 1 and Epstein-Barr virus (EBV). Most patients recognized many HIV peptides, with markedly high frequencies, in association with all the HLA class I molecules tested. We found no correlation between the intensity of anti-HIV CD8(+) responses and the CD4(+) counts or virus load. In contrast, the polyclonality of anti-HIV CD8(+) responses was positively correlated with the CD4(+) counts. The anti-EBV responses were significantly less intense than the anti-HIV responses and were positively correlated with the CD4(+) counts. Longitudinal follow-up of several patients revealed the remarkable stability of the anti-HIV and anti-EBV CD8(+) responses in two patients with stable CD4(+) counts, while both antiviral responses decreased in two patients with obvious progression toward disease. Last, highly active antiretroviral therapy induced marked decreases in the number of anti-HIV CD8(+) T cells, while the anti-EBV responses increased. These findings emphasize the magnitude of the ex vivo HIV-specific CD8(+) responses at all stages of HIV infection and suggest that the CD8(+) hyperlymphocytosis commonly observed in HIV infection is driven mainly by virus replication, through intense, continuous activation of HIV-specific CD8(+) T cells until ultimate progression toward disease. Nevertheless, highly polyclonal anti-HIV CD8(+) responses may be associated with a better clinical status. Our data also suggest that a decrease of anti-EBV CD8(+) responses may occur with depletion of CD4(+) T cells, but this could be restored by highly active antiretroviral treatment.  相似文献   

19.
Two primary cell targets for human immunodeficiency virus type 1 (HIV-1) infection in vivo are CD4+ T lymphocytes and monocyte-derived macrophages (MDM). HIV-1 encodes envelope glycoproteins which mediate virus entry into these cells. We have utilized infected and radiolabelled primary peripheral blood mononuclear cell (PBMC) and MDM cultures to examine the biochemical and antigenic properties of the HIV-1 envelope produced in these two cell types. The gp120 produced in MDM migrates as a broad, diffuse band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels compared with that of the more homogeneous gp120 released from PBMCs. Glycosidase analyses indicated that the diffuse appearance of the MDM gp120 is due to the presence of asparagine-linked carbohydrates containing lactosaminoglycans, a modification not observed with the gp120 produced in PBMCs. Neutralization experiments, using isogeneic PBMC and MDM-derived macrophage-tropic HIV-1 isolates, indicate that 8- to 10-fold more neutralizing antibody, directed against the viral envelope, is required to block virus produced from MDM. These results demonstrate that HIV-1 released from infected PBMC and MDM cultures differs in its biochemical and antigenic properties.  相似文献   

20.
To investigate the mechanisms involved in the human immunodeficiency virus type 1 (HIV-1)-related thrombocytopenia (TP), human umbilical cord blood (UCB) CD34(+) hematopoietic progenitor cells (HPCs) were challenged with HIV-1(IIIb) and then differentiated by thrombopoietin (TPO) towards megakaryocytic lineage. This study showed that HIV-1, heat-inactivated HIV-1, and HIV-1 recombinant gp120 (rgp120) activated apoptotic process of megakaryocyte (MK) progenitors/precursors and decreased higher ploidy MK cell fraction. All these inhibitory effects on MK survival/maturation and platelets formation were elicited by the interaction between gp120 and CD4 receptor on the cell membrane in the absence of HIV-1 productive infection. In fact, in our experimental conditions, HPCs were resistant to HIV-1 infection and no detectable productive infection was observed. We also evaluated whether the expression of specific cytokines, such as TGF-beta1 and APRIL, involved in the regulation of HPCs and MKs proliferation, was modulated by HIV-1. The specific protein and mRNA detection analysis, during TPO-induced differentiation, demonstrated that HIV-1 upregulates TGF-beta1 and downregulates APRIL expression through the CD4 engagement by gp120. Altogether, these data suggest that survival/differentiation of HPCs committed to MK lineage is negatively affected by HIV-1 gp120/CD4 interaction. This long-term inhibitory effect is also correlated to specific cytokines regulation and it may represent an additional mechanism to explain the TP occurring in HIV-1 patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号