首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The actin filament severing protein, Acanthamoeba actophorin, decreases the viscosity of actin filaments, but increases the stiffness and viscosity of mixtures of actin filaments and the crosslinking protein alpha-actinin. The explanation of this paradox is that in the presence of both the severing protein and crosslinker the actin filaments aggregate into an interlocking meshwork of bundles large enough to be visualized by light microscopy. The size of these bundles depends on the size of the containing vessel. The actin filaments in these bundles are tightly packed in some areas while in others they are more disperse. The bundles form a continuous reticulum that fills the container, since the filaments from a particular bundle may interdigitate with filaments from other bundles at points where they intersect. The same phenomena are seen when rabbit muscle aldolase rather than alpha-actinin is used as the crosslinker. We propose that actophorin promotes bundling by shortening the actin filaments enough to allow them to rotate into positions favorable for lateral interactions with each other via alpha-actinin. The network of bundles is more rigid and less thixotropic than the corresponding network of single actin filaments linked by alpha-actinin. One explanation may be that alpha-actinin (or aldolase) normally in rapid equilibria with actin filaments may become trapped between the filaments increasing the effective concentration of the crosslinker.  相似文献   

2.
Small-angle X-ray scattering was used to probe the structure of actin in the presence of cryosolvents: 1,2-propanediol, glycerol, or a mixture of both solvents. In media devoid of polymerizing salts, a radius of gyration of 23 Å is measured, as expected from the literature. In the presence of 1,2-propanediol alone, the scattering pattern begins to exhibit the characteristic slope of elongated objects with a non-negligible thickness, such as actin filaments polymerized in 40 mM KCl and 1 mM MgCl2. However, only short fragments (radius of gyration 40 Å) are generated. We infer that in a medium of low ionic strength containing 15% 1,2-propanediol, actin assumes a structure closer to that of filamentous actin. 1,2-propanediol apparently induces nucleation of oligomers, as with polymerizing salts, but no propagation occurs. Glycerol and/or propanediol induce no alteration in the structure of individual salt-polymerized actin filaments. Aggregation occurs with propanediol, even in the presence of glycerol. Glycerol alone has no such effect. No shortening is detected within the scale covered, with either solvent, although 1,2-propanediol is known to shorten actin filaments. We suggest that in the absence of salts, 1,2-propanediol induces a conformational change in monomeric actin that is necessary for nucleation. This could correlate with a conformational change of actin protomers within microfilaments observed in the presence of 1,2-propanediol by other authors using different techniques.Abbreviations SAXS small-angle X-ray scattering - G-actin globular monomeric actin - F-actin filamentous polymerized actin Correspondence to: E. Pajot-Augy  相似文献   

3.
Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.  相似文献   

4.
Formins are multidomain proteins that regulate actin filament dynamics and are defined by the formin homology 2 domain. Biochemical assays suggest that mammalian formins display actin-filament nucleation, severing, and bundling activities. Whether formins can cross-link actin filaments into viscoelastic arrays and the effectiveness of formins' bundling activity compared with that of important filamentous actin (F-actin) cross-linking/bundling proteins are unknown. Here, we used rigorous in vitro rheologic assays to deconvolve the dynamic cross-linking activity from the bundling activity of formin FRL1 and the closely related mDia1 and mDia2. In addition, we compared these formins with the canonical F-actin bundling protein fascin and cross-linking/bundling proteins alpha-actinin and filamin. We found that FRL1 and mDia2, but not mDia1, can help F-actin form highly elastic networks. FRL1 and mDia2 mediate the formation of highly elastic F-actin networks as effectively and rapidly as alpha-actinin and filamin but only past a relatively high actin-to-formin molar ratio of 50:1. Past that threshold molar ratio, the mechanical properties of F-actin/formin networks are independent of formin concentration, similar to fascin. Moreover, unlike those for alpha-actinin and filamin but similar to those for fascin, F-actin/formin networks show no strain-induced hardening. mDia1 cannot bundle F-actin but can weakly cross-link filaments at high concentrations. Point mutagenesis reveals that reducing the barbed-end binding activity of FRL1 and mDia2 greatly enhances the rate of formation of F-actin gels but does not significantly affect the mechanical properties of the resulting networks at steady state. Together, these results suggest that the mechanical behaviors of FRL1 and mDia2 are fundamentally different from those of cross-linking/bundling proteins alpha-actinin and filamin but qualitatively similar to the mechanical behavior of the bundling protein fascin, albeit with a dramatically increased (>10-fold) threshold concentration for transition to bundling, which nevertheless leads to much stiffer F-actin networks than fascin.  相似文献   

5.
Mechanical stresses applied to the plasma membrane of an adherent cell induces strain hardening of the cytoskeleton, i.e. the elasticity of the cytoskeleton increases with its deformation. Strain hardening is thought to mediate the transduction of mechanical signals across the plasma membrane through the cytoskeleton. Here, we describe the strain dependence of a model system consisting of actin filaments (F-actin), a major component of the cytoskeleton, and the F-actin cross-linking protein alpha-actinin, which localizes along contractile stress fibers and at focal adhesions. We show that the amplitude and rate of shear deformations regulate the resilience of F-actin networks. At low temperatures, for which the lifetime of binding of alpha-actinin to F-actin is long, F-actin/alpha-actinin networks exhibit strong strain hardening at short time scales and soften at long time scales. For F-actin networks in the absence of alpha-actinin or for F-actin/alpha-actinin networks at high temperatures, strain hardening appears only at very short time scales. We propose a model of strain hardening for F-actin networks, based on both the intrinsic rigidity of F-actin and dynamic topological constraints formed by the cross-linkers located at filaments entanglements. This model offers an explanation for the origin of strain hardening observed when shear stresses are applied against the cellular membrane.  相似文献   

6.
alpha-Actinin is an abundant actin-bundling and adhesion protein that directly links actin filaments to integrin receptors. Previously, in platelet-derived growth factor-treated fibroblasts, we demonstrated that phosphoinositides bind to alpha-actinin, regulating its localization (Greenwood, J. A., Theibert, A. B., Prestwich, G. D., and Murphy-Ullrich, J. E. (2000) J. Cell Biol. 150, 627- 642). In this study, phosphoinositide binding and regulation of alpha-actinin function is further characterized. Phosphoinositide binding specificity, determined using a protein-lipid overlay procedure, suggests that alpha-actinin interacts with phosphates on the 4th and 5th position of the inositol head group. Binding assays and mutational analyses demonstrate that phosphoinositides bind to the calponin homology domain 2 of alpha-actinin. Phosphoinositide binding inhibited the bundling activity of alpha-actinin by blocking the interaction of the actin-binding domain with actin filaments. Consistent with these results, excessive bundling of actin filaments was observed in fibroblasts expressing an alpha-actinin mutant with decreased phosphoinositide affinity. We conclude that the interaction of alpha-actinin with phosphoinositides regulates actin stress fibers in the cell by controlling the extent to which microfilaments are bundled.  相似文献   

7.
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.  相似文献   

8.
Fascin is an actin crosslinking protein that organizes actin filaments into tightly packed bundles believed to mediate the formation of cellular protrusions and to provide mechanical support to stress fibers. Using quantitative rheological methods, we studied the evolution of the mechanical behavior of filamentous actin (F-actin) networks assembled in the presence of human fascin. The mechanical properties of F-actin/fascin networks were directly compared with those formed by alpha-actinin, a prototypical actin filament crosslinking/bundling protein. Gelation of F-actin networks in the presence of fascin (fascin to actin molar ratio >1:50) exhibits a non-monotonic behavior characterized by a burst of elasticity followed by a slow decline over time. Moreover, the rate of gelation shows a non-monotonic dependence on fascin concentration. In contrast, alpha-actinin increased the F-actin network elasticity and the rate of gelation monotonically. Time-resolved multiple-angle light scattering and confocal and electron microscopies suggest that this unique behavior is due to competition between fascin-mediated crosslinking and side-branching of actin filaments and bundles, on the one hand, and delayed actin assembly and enhanced network micro-heterogeneity, on the other hand. The behavior of F-actin/fascin solutions under oscillatory shear of different frequencies, which mimics the cell's response to forces applied at different rates, supports a key role for fascin-mediated F-actin side-branching. F-actin side-branching promotes the formation of interconnected networks, which completely inhibits the motion of actin filaments and bundles. Our results therefore show that despite sharing seemingly similar F-actin crosslinking/bundling activity, alpha-actinin and fascin display completely different mechanical behavior. When viewed in the context of recent microrheological measurements in living cells, these results provide the basis for understanding the synergy between multiple crosslinking proteins, and in particular the complementary mechanical roles of fascin and alpha-actinin in vivo.  相似文献   

9.
Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  相似文献   

10.
Dictyostelium discoideum alpha-actinin (D.d. alpha-actinin) is a calcium and pH-regulated actin-binding protein that can cross-link F-actin into a gel at a submicromolar free calcium concentration and a pH less than 7 [Fechheimer, et al., 1982]. We examined mixtures of actin and D.d. alpha-actinin at four pH and calcium concentrations that exhibited various degrees of gelation or solation. The macroscopic viscosities of these mixtures were measured by falling ball viscometry (FBV) and compared to the translational diffusion coefficients measured by gaussian spot and periodic-pattern fluorescence photobleaching recovery (FPR) of both the actin filaments and D.d. alpha-actinin. A homogeneous, macroscopic gel was not composed of a static actin network. Instead, the filament diffusion coefficient decreased to approximately 65% of the control value. If the D.d. alpha-actinin concentration was increased, the solution became inhomogeneous, consisting of domains of higher actin concentration. These domains were often composed of a static actin network. The mobility of D.d. alpha-actinin consisted of a major fraction that freely diffused and a minor fraction that appeared immobile under the conditions employed. This suggested that D.d. alpha-actinin binding to the actin filaments was static over the time course of measurement (approximately 5 sec). Under solation conditions, there was no apparent interaction of actin with D.d. alpha-actinin. These results demonstrate that 1) actin filaments need not be cross-linked into an immobile, static array in order to have macroscopic properties of a gel; 2) interpretation of the rheological properties of actin:alpha-actinin gels are complicated by spatial heterogeneity of the filament concentration and mobility; and 3) a fraction of D.d. alpha-actinin binds statically to actin in undisturbed gels. The implications of these results are discussed in relation to cytoplasmic structure and contractility.  相似文献   

11.
We studied the properties of actinogelin, a Ca2+-regulated actin cross-linking protein isolated from Ehrlich tumor cells or rat liver. Chicken gizzard alpha-actinin was used as a Ca2+-insensitive control. Actinogelin, which has very high gelation activity under low Ca2+ conditions, was found using electron microscopic or fluorescence studies to induce formation of a characteristic structure in which actin filaments and bundles radiate to (or converge from) all directions from spot-like core structures. A similar structure was induced with actinogelin, even in the presence of 0.7 saturation of tropomyosin. No such structure was detected with actinogelin under high Ca2+ conditions, and only a few were found with gizzard alpha-actinin. Because reconstituted structures are similar to those observed intracellularly, actinogelin may be important in the formation of similar microfilament organization in the cells. It seems also important that these structures are reconstituted with only two purified protein components, i.e., actinogelin and actin. Immunocompetition studies showed that actinogelin and gizzard alpha-actinin partially shared antigenicity, and their molecular shape and peptide maps were similar. Their amino acid compositions [Kuo et al., 1982], subunit and domain structures, and binding sites on actin [Mimura and Asano, 1987] are also very similar. Therefore, it is concluded that actinogelin belongs to alpha-actinin superfamily proteins. Furthermore, the presence of functionally different subfamilies concerned with Ca2+ sensitivity, gelation-efficiency, and others is discussed. Actinogelin, which induces networks of actin filaments, may be classified as high gelation type.  相似文献   

12.
The mutual effect of three actin-binding proteins (alpha-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin alpha-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of alpha-actinin and calponin to actin bundles. Higher ability of calponin to depress alpha-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin-alpha-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with alpha-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that alpha-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

13.
Actin filament and bundle formation occur in the cytosol under conditions of very high total macromolecular concentration. In this study we have utilized the inert molecule polyethylene glycol 8000 (PEG) as a means of simulating crowded conditions in vitro. Column-purified Ca-actin was polymerized in the absence and presence of gelsolin (to regulate mean filament lengths between 50 and 5000 mers) and PEG (2-8%) using various concentrations of KCl and/or 2 mM divalent cations. Bundling was characterized by the scattered light intensity and mean diffusion coefficients obtained from dynamic light scattering, as well as by fluorescence and phase-contrast microscopy. The minimum concentration of KCl required for bundling decreases both with increasing concentration of PEG at a fixed mean filament length, and with decreasing filament length at a fixed concentration of PEG. In the absence of divalent cation, bundling is reversible on dilution, as determined by intensity levels, diffusion coefficients, and microscopy. However, with either 2 mM Mg2+ or Ca2+ added, bundling is irreversible under conditions of higher PEG concentrations or longer filaments, indicating that osmotic pressure effects cannot fully explain actin bundling with PEG. Weaker divalent cation-binding sites on actin as well as disulfide bonds appear to be involved in the irreversible bundling.  相似文献   

14.
Cofilin is a low molecular weight actin-modulating protein whose structure and function are conserved among eucaryotes. Cofilin exhibits in vitro both a monomeric actin-sequestering activity and a filamentous actin-severing activity. To investigate in vivo functions of cofilin, cofilin was overexpressed in Dictyostelium discoideum cells. An increase in the content of D. discoideum cofilin (d-cofilin) by sevenfold induced a co-overproduction of actin by threefold. In cells over-expressing d-cofilin, the amount of filamentous actin but not that of monomeric actin was increased. Overexpressed d-cofilin co-sedimented with actin filaments, suggesting that the sequestering activity of d- cofilin is weak in vivo. The overexpression of d-cofilin increased actin bundles just beneath ruffling membranes where d-cofilin was co- localized. The overexpression of d-cofilin also stimulated cell movement as well as membrane ruffling. We have demonstrated in vitro that d-cofilin transformed latticework of actin filaments cross-linked by alpha-actinin into bundles probably by severing the filaments. D. discoideum cofilin may sever actin filaments in vivo and induce bundling of the filaments in the presence of cross-linking proteins so as to generate contractile systems involved in membrane ruffling and cell movement.  相似文献   

15.
Both mu- and m-calpain (the micro- and millimolar Ca(2+)-requiring Ca(2+)-dependent proteinases) can completely remove Z-disks from skeletal muscle myofibrils and leave a space devoid of filaments in the Z-disk area. alpha-Actinin, a principal protein component of Z-disks, is removed from myofibrils by the calpains, and a 100-kDa polypeptide that comigrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with the alpha-actinin subunit is released into the supernatant. Purified calpain does not degrade purified actin or purified alpha-actinin as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by N- and C-terminal amino acid analysis of calpain-treated and untreated alpha-actinin and actin. The 100-kDa polypeptide released from myofibrils by calpain elutes identically with native alpha-actinin off DEAE-cellulose and hydroxyapatite columns and, after purification, binds to pure F-actin in the same manner that untreated, native alpha-actinin binds. Calpain-released alpha-actinin also accelerates the rate of superprecipitation of reconstituted actomyosin, a sensitive property characteristic of native alpha-actinin. Consequently, the calpains release alpha-actinin from the Z-disk of myofibrils without degrading it or without altering its ability to bind to actin. These results indicate that alpha-actinin does not simply cross-link thin filaments across the Z-disk but that at least one additional protein (or perhaps an altered actin or alpha-actinin) is involved in the alpha-actinin/actin interaction in Z-disks.  相似文献   

16.
Characterization of alpha-actinin from Acanthamoeba   总被引:5,自引:0,他引:5  
Characterization of a protein from Acanthamoeba that was originally called gelation protein [T.D. Pollard, J. Biol. Chem. 256:7666-7670, 1981] has shown that it resembles the actin filament cross-linking protein, alpha-actinin, found in other cells. It comprises about 1.5% of the total amoeba protein and can be purified by chromatography with a yield of 13%. The native protein has a molecular weight of 180,000 and consists of two polypeptides of 90,000 Da. The Stokes' radius is 8.5 nm, the intrinsic viscosity is 0.35 dl/dm, and the extinction coefficient at 280 mm is 1.8 X 10(5)M-1 X cm-1. Electron micrographs of shadowed specimens show that the molecule is a rod 48 nm long and 7 nm wide with globular domains at both ends and in the middle of the shaft. On gel electrophoresis in sodium dodecylsulfate the pure protein can run as bands with apparent molecular weights of 60,000, 90,000, 95,000, or 134,000 depending on the method of sample preparation. Rabbit antibodies to electrophoretically purified Acanthamoeba alpha-actinin polypeptides react with all of these electrophoretic variants in samples of purified protein and cell extracts. By indirect fluorescent antibody staining of fixed amoebas, alpha-actinin is distributed throughout the cytoplasmic matrix and concentrated in the hyaline cytoplasm of the cortex. The protein cross-links actin filaments in the presence and absence of Ca++. It inhibits slightly the time course of the spontaneous polymerization of actin monomers but has no effect on the critical concentration for actin polymerization even though it increases the apparent rate of elongation to a small extent. Like some other cross-linking proteins, amoeba alpha-actinin inhibits the actin-activated ATPase of muscle myosin subfragment-1. Although Acanthamoeba alpha-actinin resembles the alpha-actinin from other cells in shape and ability to cross-link actin filaments, antibodies to amoeba and smooth muscle alpha-actinins do not cross react and there are substantial differences in the amino acid compositions and molecular dimensions.  相似文献   

17.
The actin-activated Mg2+-ATPase activities of phosphorylated Acanthamoeba myosins IA and IB were previously found to have a highly cooperative dependence on myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This behavior is reflected in the requirement for a higher concentration of F-actin for half-maximal activation of the myosin Mg2+-ATPase at low ratios of myosin:actin (noncooperative phase) than at high ratios of myosin:actin (cooperative phase). These phenomena could be explained by a model in which each molecule of the nonfilamentous myosins IA and IB contains two F-actin-binding sites of different affinities with binding of the lower affinity site being required for expression of actin-activated ATPase activity. Thus, enzymatic activity would coincide with cross-linking of actin filaments by myosin. This theoretical model predicts that shortening the actin filaments and increasing their number concentration at constant total F-actin should increase the myosin concentration required to obtain the cooperative increase in activity and should decrease the F-actin concentration required to reach half-maximal activity at low myosin:actin ratios. These predictions have been experimentally confirmed by shortening actin filaments by addition of plasma gelsolin, an F-actin capping/severing protein. In addition, we have found that actin "filaments" as short as the 1:2 gelsolin-actin complex can significantly activate Acanthamoeba myosin I.  相似文献   

18.
We used confocal microscopy and in vitro analyses to show that Nicotiana tabacum WLIM1, a LIM domain protein related to animal Cys-rich proteins, is a novel actin binding protein in plants. Green fluorescent protein (GFP)-tagged WLIM1 protein accumulated in the nucleus and cytoplasm of tobacco BY2 cells. It associated predominantly with actin cytoskeleton, as demonstrated by colabeling and treatment with actin-depolymerizing latrunculin B. High-speed cosedimentation assays revealed the ability of WLIM1 to bind directly to actin filaments with high affinity. Fluorescence recovery after photobleaching and fluorescence loss in photobleaching showed a highly dynamic in vivo interaction of WLIM1-GFP with actin filaments. Expression of WLIM1-GFP in BY2 cells significantly delayed depolymerization of the actin cytoskeleton induced by latrunculin B treatment. WLIM1 also stabilized actin filaments in vitro. Importantly, expression of WLIM1-GFP in Nicotiana benthamiana leaves induces significant changes in actin cytoskeleton organization, specifically, fewer and thicker actin bundles than in control cells, suggesting that WLIM1 functions as an actin bundling protein. This hypothesis was confirmed by low-speed cosedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of WLIM1. Taken together, these data identify WLIM1 as a novel actin binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

19.
A protein similar to alpha-actinin has been isolated from unfertilized sea urchin eggs. This protein co-precipitated with actin from an egg extract as actin bundles. Its apparent molecular weight was estimated to be approximately 95,000 on an SDS gel: it co-migrated with skeletal-muscle alpha-actinin. This protein also co-eluted with skeletal muscle alpha-actinin from a gel filtration column giving a Stokes radius of 7.7 nm, and its amino acid composition was very similar to that of alpha-actinins. It reacted weakly but significantly with antibodies against chicken skeletal muscle alpha-actinin. We designated this protein as sea urchin egg alpha-actinin. The appearance of sea urchin egg alpha-actinin as revealed by electron microscopy using the low-angle rotary shadowing technique was also similar to that of skeletal muscle alpha-actinin. This protein was able to cross-link actin filaments side by side to form large bundles. The action of sea urchin egg alpha-actinin on the actin filaments was studied by viscometry at a low-shear rate. It gelled the F-actin solution at a molar ratio to actin of more than 1:20, at pH 6-7.5, and at Ca ion concentration less than 1 microM. The effect was abolished by the presence of tropomyosin. Distribution of this protein in the egg during fertilization and cleavage was investigated by means of microinjection of the rhodamine-labeled protein in the living eggs. This protein showed a uniform distribution in the cytoplasm in the unfertilized eggs. Upon fertilization, however, it was concentrated in the cell cortex, including the fertilization cone. At cleavage, it seemed to be concentrated in the cleavage furrow region.  相似文献   

20.
Hu X  Kuhn JR 《PloS one》2012,7(2):e31385
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号