首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we studied the influence of fusion affinity tags containing both hydrophobic and histidines residues on the partitioning of the green fluorescent protein, GFPuv, in aqueous two-phase system. The tags were fused to the N-terminal of GFPuv and tested by immobilized metal affinity partitioning, in a PEG/salt system. The presence of both types of residues in the tag increased the partitioning greatly. Particularly, four engineered tags (H6, FH6, WH6, and YH6) containing a hexa-histidine sequence as well as different hydrophobic residues, all increased partitioning more than twice, reaching K values around 20, as compared to another construct (His6-GFP) containing an isolated hexa-histidine sequence. YH6, also proved be beneficial for protein expression.  相似文献   

2.
Virtually all recombinant proteins are now prepared using fusion domains also known as “tags”. The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.  相似文献   

3.
Soluble recombinant Vitreoscilla hemoglobin was purified from E. coli lysate by sequential two-phase extraction techniques. Extraction of lysate containing VHb in PEG/dextran gave a 3.6-fold increase in VHb purity in the PEG-rich phase via a size exclusion mechanism. Further extraction of the recovered PEG phase in PEG/sodium sulfate gave an additional 2.0-fold increase in purity in the PEG-rich phase due to an electrostatic mechanism. Final extraction of the PEG phase in PEG/magnesium sulfate gave an additional 1.3-fold increase in VHb purity in the magnesium sulfate-rich phase. The final yield from the extractive purification was 47% with purity of VHb estimated to be greater than 95%. Yields from the sulfate salt extractions are essentially quantitative due to the extreme partitioning behavior of VHb in these systems. VHb partition coefficients as large as 46 in PEG/sodium sulfate and as small as 0.06 in PEG/magnesium sulfate were observed. Similar small partition coefficients were obtained with PEG/manganese sulfate extractions. This dramatic effect of divalent cation content on the partition coefficient of VHb in PEG/sulfate salt systems was investigated by pH and magnesium ion titration experiments. Results show the effect to be largest and nearly constant for pH values greater than 6.0 and diminished at lower pH values. A model based on magnesium ion binding to negatively charged amino acids is shown to correlate with the data well. Based on model formulation and the partitioning behavior of contaminant proteins, the observed effect is expected to be applicable to other proteins.  相似文献   

4.
《Process Biochemistry》2007,42(9):1296-1301
Recombinant Bacillus sphaericus phenylalanine dehydrogenase (PheDH) partitioning was studied in polyethylene glycol (PEG) and ammonium sulfate aqueous two-phase systems (ATPS). The objectives of this work were to investigate influences; varying the molecular mass and concentration of PEG, pH, phase volume ratio (VR), tie-line length (TLL) and concentration of (NH4)2SO4 on the partition behavior of PheDH. It was revealed that the partitioning was not affected by VR, while PEG molecular mass and concentration and (NH4)2SO4 concentration had significant effects on enzyme partitioning. Longer TLL and higher pH resulted in better partitioning into the top phase. Under the most favorable partition conditions with 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH4)2SO4 and VR = 0.25 at pH 8.0, partition coefficient (KE), recovery (R%), yield (Y%) and TLL were achieved 58.7%, 135%, 94.42% and 39.89% (w/w), respectively. Overall, the promising results obtained in this research indicated that the ATPS partitioning can be provided an efficient and powerful tool for recovery and purification of recombinant PheDH.  相似文献   

5.
This study presents the partitioning and purification of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH) in aqueous two-phase systems (ATPS) composed of polyethylene glycol 6000 (PEG-6000) and ammonium sulfate. A single-step operation of ATPS was developed for extraction and purification of recombinant PheDH from E. coli BL21 (DE3). The influence of system parameters including; PEG molecular weight and concentration, pH, (NH(4))(2)SO(4) concentration and NaCl salt addition on enzyme partitioning were investigated. The best optimal system for the partitioning and purification of PheDH was 8.5% (w/w) PEG-6000, 17.5% (w/w) (NH(4))(2)SO(4) and 13% (w/w) NaCl at pH 8.0. The partition coefficient, recovery, yield, purification factor and specific activity values were of 92.57, 141%, 95.85%, 474.3 and 10424.97 U/mg, respectively. Also the K(m) values for L-phenylalanine and NAD(+) in oxidative deamination were 0.020 and 0.13 mM, respectively. Our data suggested that this ATPS could be an economical and attractive technology for large-scale purification of recombinant PheDH.  相似文献   

6.
The partitioning of Bacillus stearothermophilus lactate dehydrogenase (LDH) in an aqueous two-phase system was studied. Particularly, the influence of tyrosine tags on the partitioning was evaluated. The hydrophobic effect, caused by the addition of tyrosine residues, was determined in a system based on dextran and the thermoseparating ethylene oxide-propylene oxide random copolymer (EO30PO70). Five different LDH variants were constructed with N-terminal tags containing tyrosines (Y3 and Y6), tyrosines and prolines (Y3P2 and Y6P2), and only prolines (P2). LDH fused with tags containing tyrosines increased the partitioning coefficient, and the more tyrosines added to the protein, the larger improvement in partitioning. When prolines were added between the tyrosine-rich tag and the protein, a further increased partitioning was obtained. The enhanced partitioning was attributed to the rigid structure of the proline, which in turn led to an increase in the exposure of the tag to the surroundings. The best tyrosine tag, Y6P2, increased the partition coefficient four times and additionally, a higher thermostability was observed.  相似文献   

7.
J Willers  A Lucchese  D Kanduc  S Ferrone 《Peptides》1999,20(9):1021-1026
We have analyzed sequence homologies between nonimmunogenic phage displayed peptides mimicking GD3 ganglioside and human/mouse self-proteins. The GD3 ganglioside phagotopes showed homology to proteins involved in carbohydrate metabolism/transport. Besides this expected homology, molecular mimicry of critical regulatory proteins was found. These data contribute to our understanding of the structural relatedness of antigenic determinants defined by specific anti-GD3 monoclonal antibodies and, in addition, suggest that molecular mimicry might explain the nonimmunogenicity of these peptides otherwise characterized by specificity to the mAb counterpart. We conclude that construction of peptides harboring motifs absent or scarcely represented in endogenous self-proteins might be a useful approach in melanoma immunotherapy.  相似文献   

8.
In this work we describe the new concept of using fungal hydrophobins as efficient tags for purification of recombinant fusion proteins by aqueous two-phase separation. Hydrophobins are a group of small surface-active proteins produced by filamentous fungi. Some characteristics of hydrophobins are that they are relatively small (approximately 100 amino acids), they contain eight disulfide-forming Cys residues in a conserved pattern, and they self-assemble on interfaces. The aqueous two-phase systems studied were based on nonionic surfactants that phase-separate at certain temperatures. We show that the use of hydrophobins as tags has many advantages such as high selectivity and good yield and is technically very simple to perform. Fusion proteins with target proteins of different molecular size were compared to the corresponding free proteins using a set of different surfactants. This gave an understanding on which factors influence the separation and what rationale should be used for optimization. This unusually strong and specific interaction between polymeric surfactants and a soluble protein shows promise for new developments in interfacing proteins and nonbiological materials for other applications as well.  相似文献   

9.
Affinity microspheres were prepared by immobilizing human -globulin (HGb) onto carboxylated poly (styrene/acrylamide) latex particles [P(St/AAm)-H; average diameter 0.33 m], which were prepared by emulsifier-free emulsion polymerization. HGB was covalently immobilized onto the latex particles with high efficiency by the carbodiimide method. A fusion protein (ZZB1B2) of immunoglobulin G and albumin-binding domains (ZZ and B1B2, respectively) was expressed intracellularly and extracellularly in Escherichia coli and was purified by the affinity microspheres. In poly (ethylene glycol) (PEG)/potassium phosphate aqueous two-phase system, the affinity microspheres were partitioned into the PEG-rich top phase, while cells and cell debris of E. coli were displaced into the salt-rich bottom phase. Therefore, ZZB1B2 was directly purified from cell disintegrate or culture broth by combining the affinity microspheres with the aqueous two-phase partitioning, and its purity was almost the same as that purified by conventional affinity chromatography. Therefore, by this purification method, the primary purification process and the subsequent high resolution purification process are combined, and the number of purification steps can be reduced. Correspondence to: A. Kondo  相似文献   

10.
Summary PEG has been activated using epoxy-oxirane, epichlorohydrin and periodate based reactions. The coupling to activated PEG of several protein ligands of different sizes was investigated. Glutathione, trypsin inhibitor, Protein A and anti-BSA have been bound to PEG and used to increase the selectivity of protein separation in aqueous two-phase systems.  相似文献   

11.
Four different beta-galactosidase fusion proteins have been partitioned in poly(ethylene glycol) (PEG) 4000/potassium phosphate aqueous two-phase systems. The partition coefficients (K) of staphylococcal protein A-beta-galactosidase (SpA beta gal) (K = 3.5) and staphylococcal protein A-streptococcal protein G-beta-galactosidase (AG beta gal) (K = 2.8) were compared with the partition coefficients of their constituent molecules, beta-galactosidase, SpA, and protein AG. It was found that by fusing beta-galactosidase to the smaller proteins SpA and protein AG, their partition coefficients were increased four to five times. Experimental data were fitted into, and found to agree with, the Albertsson partition model of interacting molecules. The compatibility with PEG and potassium phosphate of beta-galactosidase, SpA, and two different versions of the SpA beta gal protein, displayed as precipitation curves, showed a relationship to the protein partition coefficients in PEG/potassium phosphate systems. High solubility in one phase component was accompanied by preferential partitioning to the phase rich in the same component in the PEG/potassium phosphate system. Also, a changed linker region in SpA beta gal resulted in a more soluble protein. This, together with the improved K values of the target proteins by fusion, shows that it is possible to use beta-galactosidase as an affinity handle.  相似文献   

12.
Enzymatic methods have been used to cleave the C- or N-terminus polyhistidine tags from histidine tagged proteins following expanded bed purification using immobilized metal affinity chromatography (IMAC). This study assesses the use of Factor Xa and a genetically engineered exopeptidase dipeptidyl aminopeptidase-1 (DAPase-1) for the removal of C-terminus and N-terminus polyhistidine tags, respectively. Model proteins consisting of maltose binding protein (MBP) having a C- or N-terminal polyhistidine tag were used. Digestion of the hexahistidine tag of MBP-His(6) by Factor Xa and HT15-MBP by DAPase-1 was successful. The time taken to complete the conversion of MBP-His(6) to MBP was 16 h, as judged by SDS-PAGE and Western blots against anti-His antibody. When the detagged protein was purified using subtractive IMAC, the yield was moderate at 71% although the overall recovery was high at 95%. Likewise, a yield of 79% and a recovery of 97% was obtained when digestion was performed with using "on-column" tag digestion. On-column tag digestion involves cleavage of histidine tag from polyhistidine tagged proteins that are still bound to the IMAC column. Digestion of an N-terminal polyhistidine tag from HT15-MBP (1 mg/mL) by the DAPase-I system was superior to the results obtained with Factor Xa with a higher yield and recovery of 99% and 95%, respectively. The digestion by DAPase-I system was faster and was complete at 5 h as opposed to 16 h for Factor Xa. The detagged MBP proteins were isolated from the digestion mixtures using a simple subtractive IMAC column procedure with the detagged protein appearing in the flowthrough and washing fractions while residual dipeptides and DAPase-I (which was engineered to exhibit a poly-His tail) were adsorbed to the column. FPLC analysis using a MonoS cation exchanger was performed to understand and monitor the progress and time course of DAPase-I digestion of HT15-MBP to MBP. Optimization of process variables such as temperature, protein concentration, and enzyme activity was developed for the DAPase-I digesting system on HT15-MBP to MBP. In short, this study proved that the use of either Factor Xa or DAPase-I for the digestion of polyhistidine tags is simple and efficient and can be carried out under mild reaction conditions.  相似文献   

13.
The molecular basis of partitioning in aqueous two-phase systems.   总被引:2,自引:0,他引:2  
Protein purification based on partition in aqueous two-phase systems has attracted interest for many years. This approach has been advocated as a primary-stage unit operation in downstream processing. In reality, application has been strictly limited through inadequate understanding of the complex molecular forces involved in partitioning processes.  相似文献   

14.
A rapid method for purifying rat liver plasma membranes of high purity and yield is described. Squashed liver was homogenized in an aqueous polyethylene glycol-dextran two-phase system. After phase separation and reextraction of the bottom phase with fresh top phase, the combined polyethylene glycol-rich top phases were affinity partitioned in the presence of borate buffer with new bottom phase containing dextran-linked wheat-germ agglutinin. Under these conditions the lectin selectively pulled plasma membranes into the dextran-rich bottom phase, while other membranes preferentially distributed in the top phase. The lectin-containing bottom phase was reextracted with fresh top phase before collecting the purified plasma membranes by centrifugation. This protocol resulted in a preparation that was 30- to 40-fold enriched compared to the homogenate in plasma membrane markers for both the apical and basolateral domains and had yields of 55-70%. The contamination by other membranes was low. The entire procedure was completed within 90 min. The method should be useful for purifying plasma membranes also from other sources.  相似文献   

15.
《Process Biochemistry》2004,39(7):889-896
The feasibility and scalability of extraction in detergent-based aqueous two-phase systems for the separation of proteins from culture broth is demonstrated. At the same time the large-scale production of a fusion protein and the influence of cultivation scale on the efficiency of separation were investigated. An amphiphilic fusion protein EGIcore-HFBI was chosen, consisting of the catalytic core of the cellulase endoglucanase I and the small protein hydrophobin I, expressed homologously in Trichoderma reesei. Using the technical nonionic detergent Agrimul NRE 1205 the separation was successfully scaled up to 1200 l. No differences in yield or in partition coefficient were observed at 10 ml and 1200 l scale. Changes in the fermentation temperature and scale, however, can influence the properties of the protein and thus alter partition coefficient and yield. The decreased separation efficiency appears to be correlated with changes in glycosylation at lower cultivation temperatures.  相似文献   

16.
A strategy called macro-(affinity ligand) facilitated three-phase partitioning (MLFTPP) is described for refolding of a diverse set of recombinant proteins starting from the solubilized inclusion bodies. It essentially consists of: (i) binding of the protein with a suitable smart polymer and (ii) precipitating the polymer-protein complex as an interfacial layer by mixing in a suitable amount of ammonium sulfate and t-butanol. Smart polymers are stimuli-responsive polymers that become insoluble on the application of a suitable stimulus (e.g., a change in the temperature, pH, or concentration of a chemical species such as Ca(2+) or K(+)). The MLFTPP process required approximately 10min, and the refolded proteins were found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The folded proteins were characterized by fluorescence emission spectroscopy, circular dichroism spectroscopy, biological activity, melting temperature, and surface hydrophobicity measurements by 8-anilino-1-naphthalenesulfonate fluorescence. Two refolded antibody fragments were also characterized by measuring K(D) by Biacore by using immobilized HIV-1 gp120. The data demonstrate that MLFTPP is a rapid and convenient procedure for refolding a variety of proteins from inclusion bodies at high concentration. Although establishing the generic nature of the approach would require wider trials by different groups, its success with the diverse kinds of proteins tried so far appears to be promising.  相似文献   

17.
Purification of recombinant wild-type cutinase from the culture supernatant of Saccharomyces cerevisiae by extraction in aqueous two-phase system was investigated. The partition of the enzyme in a polyethylene glycol (PEG)-potassium phosphate system to the top phase was increased with lower molecular weight PEG. Enzyme partition in a 20% PEG/15% phosphate two-phase system was studied in the presence of detergents, fatty acids, and alcohols, respectively. Addition of 0.5% (w/w) butyrate increased the partition coefficient from 17 to 135 and the purification factor from 10 to 23. The effect of butyrate was also confirmed by using the countercurrent mode of extraction. Recovery of cutinase from the top phase was achieved by a secondary extraction into a new salt phase at a lower pH or a lower temperature. A specific interaction of butyrate to the active site of the enzyme was demonstrated by fluorescence spectroscopy. Size exclusion chromatography showed the cutinase-butyrate complex to be over two times the size of the free enzyme.  相似文献   

18.
This study describes the use of a hexa‐histidine tagged exopeptidase for the cleavage of hexa‐histidine tags from recombinant maltose binding protein (MBP) when both tagged species are bound to an immobilized metal affinity chromatography (IMAC) matrix. On‐column exopeptidase cleavage only occurred when the cleavage buffer contained an imidazole concentration of 50 mM or higher. Two strategies were tested for the on‐column tag cleavage by dipeptidylaminopeptidase (DAPase): (i) a post‐load wash was performed after sample loading using cleavage buffers containing varying imidazole concentrations and (ii) a post‐load wash was omitted following sample loading. In the presence of 50 mM imidazole, 46% of the originally adsorbed hexa‐histidine tagged MBP was cleaved, released from the column, and recovered in a sample containing 100% native (i.e., completely detagged) MBP. This strategy renders the subsequent purification steps unnecessary as any tagged contaminants remained bound to the column. At higher imidazole concentrations, binding of both hexa‐histidine tagged MBP and DAPase to the column was minimized, leading to characteristics of cleavage more closely resembling that of a batch cleavage. An on‐column cleavage yield of 93% was achieved in the presence of 300 mM imidazole, albeit with contamination of the detagged protein with tag fragments and partially tagged MBP. The success of the on‐column exopeptidase cleavage makes the integration of the poly‐histidine tag removal protocol within the IMAC protein capture step possible. The many benefits of using commercially available exopeptidases, such as DAPase, for poly‐histidine tag removal can now be combined with the on‐column tag cleavage operation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
A novel approach to develop a peptide, that can recognize fullerene (C60) is described for affinity selection of phage displayed peptides from a combinatorial peptide library. Biopanning was performed using cyclic 7-mer peptide library against C60 films deposited on silicon (Si) substrate, and eluted phages with organic solvent. The phage, that recognized C60 films deposited on Si substrate, were obtained from biopanning. The nucleotides of the phage, coding a cyclic 7-mer peptide, were sequenced by standard method. Seventeen kinds of peptide displayed phages were obtained. One kind of peptide (peptide No. 4) displayed phage recognized the C60 films deposited on Si substrate. Peptide No. 4 displayed no affinity towards the Si substrate. The recognition event was monitored by a fluorescent immunoassay. Additionally, peptide No. 4 phage could recognize C60 in powder form, but not the graphite powder. This recognition event in powder form was also observed by a fluorescent immunoassay.  相似文献   

20.
It is of great interest and importance how different amino acid residues contribute to and affect the properties of a protein surface. Partitioning in aqueous two-phase systems has the potential to be used as a rapid and simple method for studying the surface properties of proteins. The influence on partitioning of the surface exposed amino acid residues of eight structurally determined monomeric proteins has been studied. The proteins were characterized in terms of surface exposed residues with a computer program, Graphical Representation and Analysis of Surface Properties (GRASP), and partitioned in two EO30PO70-dextran aqueous two-phase systems, only differing in polymer concentrations (system I: 6.8% EO30PO70, 7.1% dextran; system II: 9% EO30PO70, 9% dextran). We show for the first time that the partitioning behaviour of different monomeric proteins can be described by the differences in surface exposed amino acid residues. The contribution to the partition coefficient of the residues was found to be best characterized by peptide partitioning in the aqueous two-phase system. Compared to hydrophobicity scales available in the literature, each amino acid contribution is characterized by the slope given by the graph of log K against peptide chain length, for peptides of different length containing only one kind of residue. It was also shown that each amino acid contribution is relative to the total protein surface and the other residues on the surface. Surface hydrophobicity calculations realized for systems I and II gave respectively correlation coefficients of 0.961 and 0.949 for the linear relation between log K and calculated hydrophobicity values. To study the effect on the partition coefficient of different amino acids, they were grouped into classes according to common characteristics: the presence of an aromatic group, a long aliphatic chain or the presence of charge. Using these groups it was possible to confirm that aromatic residues have the strongest effect on the partition coefficient, giving preference to the upper EO30PO70 phase of the system; on the other hand the presence of charged amino acids on the protein surface enhances the partition of the protein to the lower dextran phase. It is also important to note that the sensitivity of the EO30PO70-dextran system for the surface exposed residues was increased by increasing the polymer concentrations. The partition coefficient of a monomeric protein can thus be predicted from its surface exposed amino acid residues and the system can also be used to characterize protein surfaces of monomeric proteins in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号