首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The YBR159w gene encodes the major 3-ketoreductase activity of the elongase system of enzymes required for very long-chain fatty acid (VLCFA) synthesis. Mutants lacking the YBR159w gene display many of the phenotypes that have previously been described for mutants with defects in fatty acid elongation. These phenotypes include reduced VLCFA synthesis, accumulation of high levels of dihydrosphingosine and phytosphingosine, and accumulation of medium-chain ceramides. In vitro elongation assays confirm that the ybr159Delta mutant is deficient in the reduction of the 3-ketoacyl intermediates of fatty acid elongation. The ybr159Delta mutant also displays reduced dehydration of the 3-OH acyl intermediates of fatty acid elongation, suggesting that Ybr159p is required for the stability or function of the dehydratase activity of the elongase system. Green fluorescent protein-tagged Ybr159p co-localizes and co-immunoprecipitates with other elongating enzymes, Elo3p and Tsc13p. Whereas VLCFA synthesis is essential for viability, the ybr159Delta mutant cells are viable (albeit very slowly growing) and do synthesize some VLCFA. This suggested that a functional ortholog of Ybr159p exists that is responsible for the residual 3-ketoreductase activity. By disrupting the orthologs of Ybr159w in the ybr159Delta mutant we found that the ybr159Deltaayr1Delta double mutant was inviable, suggesting that Ayr1p is responsible for the residual 3-ketoreductase activity.  相似文献   

2.
Glycosylphosphatidylinositol (GPI)-anchored cell wall proteins play an important role in the structure and function of the cell wall in yeast and other fungi. Although the majority of characterized fungal GPI-anchored proteins do in fact localize to the cell wall, some are believed to reside at the plasma membrane and not to traffic significantly to the cell wall. There is evidence suggesting that the amino acids immediately upstream of the site of GPI anchor addition (the omega site) serve as the signal determining whether a GPI protein localizes to the cell wall or to the plasma membrane, although this remains controversial. Here, we examine in detail the functional and biochemical differences between the GPI anchor addition signals of putative cell wall (CW) and plasma membrane (PM) GPI proteins. We find strong evidence for the existence of PM-class and CW-class GPI proteins. We show that the biological function of a GPI-CWP is strongly compromised by changing the GPI anchor signal from a CW-class signal to a PM-class signal. Biochemically, this abrogation of function corresponds to a change in the protein from a cell wall form to a membrane form. To understand better the basis for the difference between the two classes of proteins, we mutated the amino acids upstream of the omega site in a GPI-PM protein and selected mutant proteins that were now localized to the cell wall. We were also able to design simple amino acid mutations in a GPI-CW protein that efficiently redirected the protein to the plasma membrane. These studies make clear that different GPI anchor sequences can have dramatic effects on localization of the proteins and help to define the GPI anchor addition signal sequences that distinguish the PM-class and CW-class GPI proteins.  相似文献   

3.
Glycosylphosphatidylinositol (GPI) anchoring plays key roles in many biological processes by targeting proteins to the cell wall; however, its roles are largely unknown in plant pathogenic fungi. Here, we reveal the roles of the GPI anchoring in Magnaporthe oryzae during plant infection. The GPI-anchored proteins were found to highly accumulate in appressoria and invasive hyphae. Disruption of GPI7, a GPI anchor-pathway gene, led to a significant reduction in virulence. The Δgpi7 mutant showed significant defects in penetration and invasive growth. This mutant also displayed defects of the cell wall architecture, suggesting GPI7 is required for cell wall biogenesis. Removal of GPI-anchored proteins in the wild-type strain by hydrofluoric acid (HF) pyridine treatment exposed both the chitin and β-1,3-glucans to the host immune system. Exposure of the chitin and β-1,3-glucans was also observed in the Δgpi7 mutant, indicating GPI-anchored proteins are required for immune evasion. The GPI anchoring can regulate subcellular localization of the Gel proteins in the cell wall for appressorial penetration and abundance of which for invasive growth. Our results indicate the GPI anchoring facilitates the penetration of M. oryzae into host cells by affecting the cell wall integrity and the evasion of host immune recognition.  相似文献   

4.
Like most other eukaryotes, Saccharomyces cerevisiae harbors a GPI anchoring machinery and uses it to attach proteins to membranes. While a few GPI proteins reside permanently at the plasma membrane, a majority of them gets further processed and is integrated into the cell wall by a covalent attachment to cell wall glucans. The GPI biosynthetic pathway is necessary for growth and survival of yeast cells. The GPI lipids are synthesized in the ER and added onto proteins by a pathway comprising 12 steps, carried out by 23 gene products, 19 of which are essential. Some of the estimated 60 GPI proteins predicted from the genome sequence serve enzymatic functions required for the biosynthesis and the continuous shape adaptations of the cell wall, others seem to be structural elements of the cell wall and yet others mediate cell adhesion. Because of its genetic tractability S. cerevisiae is an attractive model organism not only for studying GPI biosynthesis in general, but equally for investigating the intracellular transport of GPI proteins and the peculiar role of GPI anchoring in the elaboration of fungal cell walls.  相似文献   

5.
6.
Prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored protein, and the C-terminal GPI anchor signal sequence (GPI-SS) of PrP is cleaved before GPI anchoring. However, mutations near the GPI anchor attachment site (the ω site) in the GPI-SS have been recognized in human genetic prion diseases. Moreover, the ω site of PrP has not been identified except hamster, though it is known that amino acid restrictions are very severe at the ω and ω + 2 sites in other GPI-anchored proteins. To investigate the effect of mutations near the ω site of PrP on the conversion and the GPI anchoring, and to discover the ω site of murine PrP, we systematically created mutant murine PrP with all possible single amino acid substitutions at every amino acid residue from codon 228 to 240. We transfected them into scrapie-infected mouse neuroblastoma cells and examined the conversion efficiencies and the GPI anchoring of each mutant PrP. Mutations near the ω site altered the conversion efficiencies and the GPI anchoring efficiencies. Especially, amino acid restrictions for the conversion and the GPI anchoring were severe at codons 230 and 232 in murine PrP, though they were less severe than in other GPI-anchored proteins. Only the mutant PrPs presented on a cell surface via a GPI anchor were conversion competent. The present study shows that mutations in the GPI-SS can affect the GPI anchoring and the conversion efficiency of PrP. We clarified for the first time the ω site of murine PrP and the amino acid conditions near the ω site for the conversion as well as GPI anchoring.  相似文献   

7.
8.
[目的]在酵母细胞中蛋白质的糖基磷酸肌醇化(GPI)修饰是将GPI定位于细胞膜或细胞壁的信号.目前已对酵母GPI蛋白的细胞定位信号有一定了解,但对丝状真菌GPI蛋白的定位则了解甚少.AfPhoA是丝状真菌烟曲霉(Aspergillus fumigatus)的酸性磷酸酯酶,是GPI修饰的蛋白.该蛋白首先分离自细胞膜,随后又发现该蛋白与细胞壁结合.分析其C-端序列也未发现已知的定位信号,因此目前还不能确定其细胞定位.[方法]我们以绿色荧光蛋白(GFP)作为报告分子,将AfPhoA的C-端序列与GFP的C-端融合后检测融合GFP的细胞定位.[结果]我们用烟曲霉几丁质酶AfChiB1的启动子和N-端信号肽构建了可在烟曲霉中分泌表达GFP的表达载体pchiGFP.在此基础上将AfPhoA的C-端与GFP融合,融合质粒与pCDA14共转化烟曲霉后筛选到一株转化子.该转化子可表达融合GFP,在诱导和非诱导条件下,融合GFP均主要分布在细胞膜上,随培养时间的延长,融合GFP在细胞壁上也有少量分布;在培养上清液中只能检出约30KD的GFP融合蛋白,而没有完整的GFP融合蛋白,推测为从GPI锚上水解释放的.[结论]我们的研究结果表明,AfPhoA蛋白GPI修饰的作用是使该蛋白定位于细胞膜.本研究不仅初步确定了AfPhoA蛋白GPI修饰的细胞膜定位功能,而且为烟曲霉基因与蛋白质功能的研究建立了一个有效表达系统.  相似文献   

9.
GPI‐anchoring is a universal and critical post‐translational protein modification in eukaryotes. In fungi, many cell wall proteins are GPI‐anchored, and disruption of GPI‐anchored proteins impairs cell wall integrity. After being synthesized and attached to target proteins, GPI anchors undergo modification on lipid moieties. In spite of its importance for GPI‐anchored protein functions, our current knowledge of GPI lipid remodelling in pathogenic fungi is limited. In this study, we characterized the role of a putative GPI lipid remodelling protein, designated PerA, in the human pathogenic fungus Aspergillus fumigatus. PerA localizes to the endoplasmic reticulum and loss of PerA leads to striking defects in cell wall integrity. A perA null mutant has decreased conidia production, increased susceptibility to triazole antifungal drugs, and is avirulent in a murine model of invasive pulmonary aspergillosis. Interestingly, loss of PerA increases exposure of β‐glucan and chitin content on the hyphal cell surface, but diminished TNF production by bone marrow‐derived macrophages relative to wild type. Given the structural specificity of fungal GPI‐anchors, which is different from humans, understanding GPI lipid remodelling and PerA function in A. fumigatus is a promising research direction to uncover a new fungal specific antifungal drug target.  相似文献   

10.
Glycosylphosphatidylinositol (GPI)-anchored proteins are essential for normal cellular morphogenesis and have an additional role in mediating cross-linking of glycoproteins to cell wall glucan in yeast cells. Although many GPI-anchored proteins have been characterized in Saccharomyces cerevisiae, none have been reported for well-characterized GPI-anchored proteins in Schizosaccharomyces pombe to date. Among the putative GPI-anchored proteins in S. pombe, four alpha-amylase homologs (Aah1p-Aah4p) have putative signal sequences and C-terminal GPI anchor addition signals. Disruption of aah3(+) resulted in a morphological defect and hypersensitivity to cell wall-degrading enzymes. Biochemical analysis showed that Aah3p is an N-glycosylated, GPI-anchored membrane protein localized in the membrane and cell wall fractions. Conjugation and sporulation were not affected by the aah3(+) deletion, but the ascal wall of aah3Delta cells was easily lysed by hydrolases. Expression of aah3 alleles in which the conserved aspartic acid and glutamic acid residues required for hydrolase activity were replaced with alanine residues failed to rescue the morphological and ascal wall defects of aah3Delta cells. Taken together, these results indicate that Aah3p is a GPI-anchored protein and is required for cell and ascal wall integrity in S. pombe.  相似文献   

11.
All known glycophosphatidylinositol (GPI)-anchored membrane proteins contain a COOH-terminal hydrophobic domain necessary for signalling anchor attachment. To examine the requirement that this signal be at the COOH terminus of the protein, we constructed a chimeric protein, DAFhGH, in which human growth hormone (hGH) was fused to the COOH terminus of decay accelerating factor (DAF) (a GPI-anchored protein), thereby placing the GPI signal in the middle of the chimeric protein. We show that the fusion protein appears to be processed at the normal DAF processing site in COS cells, producing GPI-anchored DAF on the cell surface. This result indicates that the GPI signal does not have to be at the COOH terminus to direct anchor addition, suggesting that the absence of a hydrophilic COOH-terminal extension (beyond the hydrophobic domain) is not a necessary requirement for GPI anchoring. A similar DAFhGH fusion, containing an internal GPI signal in which the DAF hydrophobic domain was replaced with the signal peptide of hGH, also produced GPI-anchored cell surface DAF. The signal for GPI attachment thus exhibits neither position specificity nor sequence specificity. In addition, mutant DAF or DAFhGH constructs lacking an NH2-terminal signal peptide failed to produce GPI-anchored protein, suggesting that membrane translocation is necessary for anchor addition.  相似文献   

12.
Fabre AL  Orlean P  Taron CH 《The FEBS journal》2005,272(5):1160-1168
Addition of the second mannose is the only obvious step in glycosylphosphatidylinositol (GPI) precursor assembly for which a responsible gene has not been discovered. A bioinformatics-based strategy identified the essential Saccharomyces cerevisiae Ybr004c protein as a candidate for the second GPI alpha-mannosyltransferase (GPI-MT-II). S. cerevisiae cells depleted of Ybr004cp have weakened cell walls and abnormal morphology, are unable to incorporate [3H]inositol into proteins, and accumulate a GPI intermediate having a single mannose that is likely modified with ethanolamine phosphate. These data indicate that Ybr004cp-depleted yeast cells are defective in second mannose addition to GPIs, and suggest that Ybr004cp is GPI-MT-II or an essential subunit of that enzyme. Ybr004cp homologues are encoded in all sequenced eukaryotic genomes, and are predicted to have 8 transmembrane domains, but show no obvious resemblance to members of established glycosyltransferase families. The human Ybr004cp homologue can substitute for its S. cerevisiae counterpart in vivo.  相似文献   

13.
A genetic screen for ethanolamine auxotrophs has identified a novel mutant allele of the morphogenesis checkpoint dependent (MCD)-4 gene, designated mcd4-P301L. In the presence of a null allele for the phosphatidylserine (PtdSer) decarboxylase 1 gene (psd1 Delta), the mcd4-P301L mutation confers temperature sensitivity for growth on minimal medium. This growth defect is reversed by either ethanolamine or choline supplementation. Incubation of mutant cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrated a 60% decrease in phosphatidylethanolamine (PtdEtn) formation compared to parental cells. Chemical analysis of phospholipid content after culture under non-permissive conditions also demonstrated a 60% decrease in the PtdEtn pool compared to the parental strain. Although the morphogenesis checkpoint dependent (MCD)-4 gene and its homologues have been shown to play a role in glycosylphosphatidylinositol (GPI) anchor synthesis, the mcd4-P301L strain displayed normal incorporation of [(3)H]inositol into both proteins and lipids. Thus, a defect in GPI anchor synthesis does not explain either the ethanolamine auxotrophy or biochemical phenotype of this mutant. We also examined the growth characteristics and PtdSer metabolism of a previously described mcd4-174 mutant strain, with defects in GPI anchor synthesis, protein modification and cell wall maintenance. The mcd4-174, psd1 Delta strain is a temperature sensitive ethanolamine auxotroph that requires osmotic support for growth, and displays normal PtdEtn formation compared to parental cells. These results reveal important genetic interactions between PSD1 and MCD4 genes, and provide evidence that Mcd4p can modulate aminoglycerophospholipid metabolism, in a way independent of its role in GPI anchor synthesis.  相似文献   

14.
Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.  相似文献   

15.
Glycosylphosphatidylinositol (GPI) anchoring is important for the function of several proteins in the context of their membrane trafficking pathways. We have shown previously that endocytosed GPI-anchored proteins (GPI-APs) are recycled to the plasma membrane three times more slowly than other membrane components. Recently, we found that GPI-APs are delivered to endocytic organelles, devoid of markers of the clathrin-mediated pathway, prior to their delivery to a common recycling endosomal compartment (REC). Here we show that the rate-limiting step in the recycling of GPI-APs is their slow exit from the REC; replacement of the GPI anchor with a transmembrane protein sequence abolishes retention in this compartment. Depletion of endogenous sphingolipid levels using sphingolipid synthesis inhibitors or in a sphingolipid-synthesis mutant cell line specifically enhances the rate of endocytic recycling of GPI-APs to that of other membrane components. We have shown previously that endocytic retention of GPI-APs is also relieved by cholesterol depletion. These findings strongly suggest that functional retention of GPI-APs in the REC occurs via their association with sphingolipid and cholesterol-enriched sorting platforms or 'rafts'.  相似文献   

16.
Resistance of Pseudomonas aeruginosa to multiple species of antibiotics is largely attributable to expression of the MexA, B-OprM efflux pump. The MexA protein is thought to be located at the inner membrane and has been assumed to link the xenobiotics-exporting subunit, MexB, and the outer membrane channel protein, OprM. To verify this assumption, we analyzed membrane anchoring and localization of the MexA protein. n-[9, 10-(3)H]Palmitic acid incorporation experiments revealed that MexA was radiolabeled with palmitic acid, suggesting that the MexA anchors the inner membrane via the fatty acid moiety. To evaluate the role of lipid modification and inner membrane anchoring, we substituted cysteine 24 with phenylalanine or tyrosine and tested whether or not these mutant MexAs function properly. When the mutant mexAs were expressed in the strain lacking chromosomal mexA in the presence of n-[9,10-(3)H]palmitic acid, we found undetectable radiolabeling at the MexA band. These transformants restored antibiotic resistance to the level of the wild-type strain, indicating that lipid modification is not essential for MexA function. These mutant strains contained both processed and unprocessed forms of the MexA proteins. Cellular fractionation experiments revealed that an unprocessed form of MexA anchored the inner membrane probably via an uncleaved signal sequence, whereas the processed form was undetectable in the membrane fraction. To assure that the lipid-free MexA polypeptide could be unbound to the membrane, we analyzed the two-dimensional membrane topology by the gene fusion technique. A total of 78 mexA-blaM fusions covering the entire MexA polypeptide were constructed, and all fusion sites were shown to be located at the periplasm. To answer the question of whether or not membrane anchoring is essential for the MexA function, we replaced the signal sequence of the MexA protein with that of the azurin protein, which contains a cleavable signal sequence but no lipid modification site. The signal sequence of the azurin-MexA hybrid protein was properly processed and bore the mature MexA, which was fully recovered in the soluble fraction. The transformant, which expressed azurin-MexA hybrid protein restored the antibiotic resistance to a level indistinguishable from that of the wild-type strain. We concluded from these results that the MexA protein is fully functional as expressed in the periplasmic space without anchoring the inner membrane. This finding questioned the assumption that the membrane fusion proteins connect the inner and outer membranes.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of beta-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.  相似文献   

18.
Nearly 5% of membrane proteins are guided to nuclear, endoplasmic reticulum (ER), mitochondrial, Golgi, or peroxisome membranes by their C-terminal transmembrane domain and are classified as tail-anchored (TA) membrane proteins. In Saccharomyces cerevisiae, the guided entry of TA protein (GET) pathway has been shown to function in the delivery of TA proteins to the ER. The sorting complex for this pathway is comprised of Sgt2, Get4, and Get5 and facilitates the loading of nascent tail-anchored proteins onto the Get3 ATPase. Multiple pulldown assays also indicated that Ybr137wp associates with this complex in vivo. Here, we report a 2.8-Å-resolution crystal structure for Ybr137wp from Saccharomyces cerevisiae. The protein is a decamer in the crystal and also in solution, as observed by size exclusion chromatography and analytical ultracentrifugation. In addition, isothermal titration calorimetry indicated that the C-terminal acidic motif of Ybr137wp interacts with the tetratricopeptide repeat (TPR) domain of Sgt2. Moreover, an in vivo study demonstrated that Ybr137wp is induced in yeast exiting the log phase and ameliorates the defect of TA protein delivery and cell viability derived by the impaired GET system under starvation conditions. Therefore, this study suggests a possible role for Ybr137wp related to targeting of tail-anchored proteins.  相似文献   

19.
Gpi7 was isolated by screening for mutants defective in the surface expression of glycosylphosphatidylinositol (GPI) proteins. Gpi7 mutants are deficient in YJL062w, herein named GPI7. GPI7 is not essential, but its deletion renders cells hypersensitive to Calcofluor White, indicating cell wall fragility. Several aspects of GPI biosynthesis are disturbed in Deltagpi7. The extent of anchor remodeling, i.e. replacement of the primary lipid moiety of GPI anchors by ceramide, is significantly reduced, and the transport of GPI proteins to the Golgi is delayed. Gpi7p is a highly glycosylated integral membrane protein with 9-11 predicted transmembrane domains in the C-terminal part and a large, hydrophilic N-terminal ectodomain. The bulk of Gpi7p is located at the plasma membrane, but a small amount is found in the endoplasmic reticulum. GPI7 has homologues in Saccharomyces cerevisiae, Caenorhabditis elegans, and man, but the precise biochemical function of this protein family is unknown. Based on the analysis of M4, an abnormal GPI lipid accumulating in gpi7, we propose that Gpi7p adds a side chain onto the GPI core structure. Indeed, when compared with complete GPI lipids, M4 lacks a previously unrecognized phosphodiester-linked side chain, possibly an ethanolamine phosphate. Gpi7p contains significant homology with phosphodiesterases suggesting that Gpi7p itself is the transferase adding a side chain to the alpha1,6-linked mannose of the GPI core structure.  相似文献   

20.
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号