首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic mechanism of triosephosphate isomerase (TIM) was investigated with ab initio quantum mechanical calculations. Electrostatic interactions between the quantum mechanical active site and the protein and solvent environment were modeled using the finite difference Poission-Boltzman method. The complexes of TIM with the substrate dihydroxyacetone phosphate (DHAP), five possible intermediates and the product glyceraldehyde-3-phosphate (GAP) were optimized in the active-site model at the 3-21G(*) level and energy profile for the proton abstraction from DHAP by the active-site Glu167 was calculated at the MP2/3-21G(*)//3-21G(*) level. Calculated energetics of the enzyme reaction were found to be in reasonable agreement with the experimental findings. Calculations revealed that an enediol of the substrate is a probable intermediate in the enzyme reaction. It was suggested that the proton abstracted from the substrate by the active-site glutamate goes to the carbonyl oxygen of the substrate producing enediol intermediate either directly or after it is exchanged with solvent. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The glycolytic enzyme triosephosphate isomerase (TIM) catalyzes the interconversion of the three-carbon sugars dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (GAP) at a rate limited by the diffusion of substrate to the enzyme. We have solved the three-dimensional structure of TIM complexed with a reactive intermediate analogue, phosphoglycolohydroxamate (PGH), at 1.9-A resolution and have refined the structure to an R-factor of 18%. Analysis of the refined structure reveals the geometry of the active-site residues and the interactions they make with the inhibitor and, by analogy, the substrates. The structure is consistent with an acid-base mechanism in which the carboxylate of Glu-165 abstracts a proton from carbon while His-95 donates a proton to oxygen to form an enediol (or enediolate) intermediate. The conformation of the bound substrate stereoelectronically favors proton transfer from substrate carbon to the syn orbital of Glu-165. The crystal structure suggests that His-95 is neutral rather than cationic in the ground state and therefore would have to function as an imidazole acid instead of the usual imidazolium. Lys-12 is oriented so as to polarize the substrate oxygens by hydrogen bonding and/or electrostatic interaction, providing stabilization for the charged transition state. Asn-10 may play a similar role.  相似文献   

3.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

4.
The effects of pH, solvent isotope, and primary isotope replacement on substrate dehydrogenation by Rhodotorula gracilis d-amino acid oxidase were investigated. The rate constant for enzyme-FAD reduction by d-alanine increases approximately fourfold with pH, reflecting apparent pKa values of approximately 6 and approximately 8, and reaches plateaus at high and low pH. Such profiles are observed in all presteady-state and steady-state kinetic experiments, using both d-alanine and d-asparagine as substrates, and are inconsistent with the operation of a base essential to catalysis. A solvent deuterium isotope effect of 3.1 +/- 1.1 is observed on the reaction with d-alanine at pH 6; it decreases to 1.2 +/- 0.2 at pH 10. The primary substrate isotope effect on the reduction rate with [2-D]d-alanine is 9.1 +/- 1.5 at low and 2.3 +/- 0.3 at high pH. At pH 6.0, the solvent isotope effect is 2.9 +/- 0.8 with [2-D]d-alanine, and the primary isotope effect is 8.4 +/- 2.4 in D2O. Thus, primary and solvent kinetic isotope effects (KIEs) are independent of the presence of the other isotope, i.e. the 'double' kinetic isotope effect is the product of the individual KIEs, consistent with a transition state in which rupture of the two bonds of the substrate to hydrogen is concerted. These results support a hydride transfer mechanism for the dehydrogenation reaction in d-amino acid oxidase and argue against the occurrence of any intermediates in the process. A pKa,app of approximately 8 is interpreted to arise from the microscopic ionization of the substrate amino acid alpha-amino group, but also includes contributions from kinetic parameters.  相似文献   

5.
J M Denu  P F Fitzpatrick 《Biochemistry》1992,31(35):8207-8215
Primary deuterium kinetic isotope and pH effects on the reduction of D-amino acid oxidase by amino acid substrates were determined using steady-state and rapid reaction methods. With D-serine as substrate, reduction of the enzyme-bound FAD requires that a group with a pKa value of 8.7 be unprotonated and that a group with a pKa value of 10.7 be protonated. The DV/Kser value of 4.5 is pH-independent, establishing that these pKa values are intrinsic. The limiting rate of reduction of the enzyme shows a kinetic isotope effect of 4.75, consistent with this as the intrinsic value. At high enzyme concentration (approximately 15 microM) at pH 9,D-serine is slightly sticky (k3/k2 = 0.8), consistent with a decrease in the rate of substrate dissociation. With D-alanine as substrate, the pKa values are perturbed to 8.1 and 11.5. The DV/Kala value increases from 1.3 at pH 9.5 to 5.1 at pH 4, establishing that D-alanine is sticky with a forward commitment of approximately 10. The effect of pH on the DV/Kala value is consistent with a model in which exchange with solvent of the proton from the group with pKa 8.7 is hindered and is catalyzed by H2O and OH- above pH 7 and by H3O+ and H2O below pH 7. With glycine, the pH optimum is shifted to a more basic value, 10.3. The DV/Kgly value increases from 1.26 at pH 6.5 to 3.1 at pH 10.7, consistent with fully reversible CH bond cleavage followed by a pH-dependent step. At pH 10.5, the kinetic isotope effect on the limiting rate of reduction is 3.4.  相似文献   

6.
Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate.  相似文献   

7.
Williams L  Nguyen T  Li Y  Porter TN  Raushel FM 《Biochemistry》2006,45(24):7453-7462
Uronate isomerase, a member of the amidohydrolase superfamily, catalyzes the isomerization of D-glucuronate and D-fructuronate. During the interconversion of substrate and product the hydrogen at C2 of D-glucuronate is transferred to the pro-R position at C1 of the product, D-fructuronate. The exchange of the transferred hydrogen with solvent deuterium occurs at a rate that is 4 orders of magnitude slower than the interconversion of substrate and product. The enzyme catalyzes the elimination of fluoride from 3-deoxy-3-fluoro-D-glucuronate. These results have been interpreted to suggest a chemical reaction mechanism in which an active site base abstracts the proton from C2 of D-glucuronate to form a cis-enediol intermediate. The conjugate acid then transfers this proton to C1 of the cis-enediol intermediate to form D-fructuronate. The loss of fluoride from 3-deoxy-3-fluoro-D-glucuronate is consistent with a stabilized carbanion at C2 of the substrate during substrate turnover. The slow exchange of the transferred hydrogen with solvent water is consistent with a shielded conjugate acid after abstraction of the proton from either D-glucuronate or D-fructuronate during the isomerization reaction. This conclusion is supported by the competitive inhibition of the enzymatic reaction by D-arabinaric acid and the monohydroxamate derivative with Ki values of 13 and 670 nM, respectively. There is no evidence to support a hydride transfer mechanism for uronate isomerase. The wild type enzyme was found to contain 1 equiv of zinc per subunit. The divalent cation could be removed by dialysis against the metal chelator, dipicolinate. However, the apoenzyme has the same catalytic activity as the Zn-substituted enzyme and thus the divalent metal ion is not required for enzymatic activity. This is the only documented example of a member in the amidohydrolase superfamily that does not require one or two divalent cations for enzymatic activity.  相似文献   

8.
A procedure for the preparation of N-[1-(2-naphthol)]-phosphatidylethanolamine (NAPH-PE) has been developed. The synthesis is based on the Schiff base formation between the NH2 of the phospholipid and the aldehyde moiety of 2-hydroxy-1-naphthaldehyde. Then selective reduction of the imine is used to obtain the stable secondary amine, NAPH-PE. Formation of the intermediate Schiff base and the final product is confirmed by 13C- and 1H-NMR. Similar to free 2-naphthol, the excited-state pKa (pKa*) of its phospholipid derivative appears to be significantly lower than the ground-state pKa. At pH 7.4, the excitation spectrum of NAPH-PE shows no deprotonated species in the ground-state, while the emission spectrum presents a significant contribution of this species. Thus the fluorescent phospholipid exhibits the typical behavior of excited-state proton-transfer probes. NAPH-PE is found to incorporate in dimyristoyllecithin (DML) vesicles. The emission spectrum of the probe inserted in the liposomes is affected by acetate used as a proton acceptor. These properties should also be manifest in other lipid bilayers (e.g., plasma membranes of cells) and used for excited-state proton transfer studies.  相似文献   

9.
The family of FMN-dependent, alpha-hydroxy acid-oxidizing enzymes catalyzes substrate dehydrogenation by a mechanism the first step of which is abstraction of the substrate alpha-proton (so-called carbanion mechanism). For flavocytochrome b2 and lactate oxidase, it was shown that once on the enzyme this proton is lost only slowly to the solvent (Lederer F, 1984, In: Bray RC, Engel PC, Mayhew SG, eds, Flavins & flavoproteins, Berlin: Walter de Gruyter & Co., pp 513-526; Urban P, Lederer F, 1985, J Biol Chem 260:11115-11122). This suggested the occurrence of a pKa increase of the catalytic histidine upon enzyme reduction by substrate. For flavocytochrome b2, the crystal structure indicated 2 possible origins for the stabilization of the imidazolium form of His 373: either a network of hydrogen bonds involving His 373, Tyr 254, flavin N5 and O4, a heme propionate, and solvent molecules, and/or electrostatic interactions with Asp 282 and with the reduced cofactor N1 anion. In this work, we probe the effect of the hydrogen bond network at the active site by studying proton exchange with solvent for 2 mutants: Y254F and the recombinant flavodehydrogenase domain, in which this network should be disrupted. The rate of proton exchange, as determined by intermolecular hydrogen transfer experiments, appears identical in the flavodehydrogenase domain and the wild-type enzyme, whereas it is about 3-fold faster in the Y254F mutant. It thus appears that specific hydrogen bonds to the solvent do not play a major role in stabilizing the acid form of His 373 in reduced flavocytochrome b2. Removal of the Y254 phenol group induces a pKa drop of about half a pH unit for His 373 in the reduced enzyme. Even then, the rate of exchange of the imidazolium proton with solvent is still lower by several orders of magnitude than that of a normally ionizing histidine. Other factors must then also contribute to the pKa increase, such as the electrostatic interactions with D282 and the anionic reduced cofactor, as suggested by the crystal structure.  相似文献   

10.
M Farnum  M Palcic  J P Klinman 《Biochemistry》1986,25(8):1898-1904
The pH dependence of steady-state parameters for [1,1-1H2]- and [1,1-2H2]benzylamine oxidation and of tritium exchange from [2-3H]dopamine has been measured in the bovine plasma amine oxidase reaction. Deuterium isotope effects on kcat/Km for benzylamine are observed to be constant, near the intrinsic value of 13.5, over the experimental pH range, indicating that C-H bond cleavage is fully rate limiting for this parameter. As a consequence, pKa values derived from kcat/Km profiles, 8.0 +/- 0.1 (pK1) and 9.0 +/- 0.16 (pKs), can be ascribed to microscopic pKa values for the ionization of an essential active site residue (EB1) and substrate, respectively. Profiles for kcat and Dkcat show that EB1 undergoes a perturbation from 8.0 to 5.6 +/- 0.3 (pK1') in the presence of substrate; additionally, a second ionization, pK2 = 7.25 +/- 0.25, is observed to mediate but not be essential for enzyme reoxidation. The pH dependence of the ratio of tritium exchange to product formation for dopamine also indicates base catalysis with a pKexch = 5.5 +/- 0.01, which is within experimental error of pK1'. We conclude that the data presented herein support a single residue catalyzing both substrate oxidation and exchange, consistent with recent stereochemical results that implicate a syn relationship between these processes [Farnum, M., & Klinman, J.P. (1985) Fed. Proc., Fed. Am. Soc. Exp. Biol. 44, 1055]. This conclusion contrasts with earlier kinetic data in support of a large rate differential for the exchange of hydrogen from C-1 vs. C-2 of phenethylamine derivatives [Palcic, M.M., & Klinman, J.P. (1983) Biochemistry 22, 5957-5966].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Neutron activation analysis of UDP-galactose 4-epimerase from Escherichia coli for 53 metals shows that the enzyme does not contain any of these metals at significant levels. The substrate analog P1-5'-uridine-P2-glucose-6-yl pyrophosphate (UGP), a structural isomer of UDP-glucose with the sugar linked to UDP through the C-6 hydroxyl group, is an inactivator that irreversibly reduces epimerase.NAD+ to epimerase.NADH. The pH dependence of kobs reveals the essential involvement of an acidic group, kinetically measured pKa = 5.48 +/- 0.08, in unprotonated form and two weakly acidic or basic groups, apparent pKa values of 10.03 +/- 0.43, in protonated forms. Measurements of kobs as a function of [UGP] show that it is given by kobs = k[UGP]/(K + [UGP]) at a given pH, where K = 0.19 +/- 0.04 mM throughout the pH range 4.8-10.4. The pH-dependent first order rate constants range from 0.28 to 1.94 s-1, with the maximum value at pH 7.6 and decreasing at acidic and basic pH values. Reaction of [glucose-1-2H]UGP proceeds with kinetic isotope effects of 5.0, 2.1, 2.0, 1.9, and 3.5 at pH values 5.0, 6.2, 7.6, 9.0, and 10.0, respectively. Therefore, hydride transfer becomes rate-limiting at pH extremes but is not limiting at neutral pH, although deuteride transfer is significantly limiting at all pH values. The isotope effects facilitated correction of the kinetic pK values to the thermodynamic values 6.1-6.2 on the acid side and 9.0-9.6 on the alkaline side. We postulate that the group with pK1 = 5.5 (6.1-6.2 corrected) functions as an enzymic general base that abstracts the glucosyl C-1 hydroxyl proton in concert with transfer of the C-1 hydrogen and two electrons to NAD+. The pH dependence on the alkaline side may be related to the uridine nucleotide-dependent conformational transition that is an essential step in the reduction of epimerase.NAD+ to epimerase.NADH by sugars.  相似文献   

12.
P J Lodi  J R Knowles 《Biochemistry》1991,30(28):6948-6956
To illuminate the role of histidine-95 in the catalytic reaction mediated by triosephosphate isomerase, 13C and 15N NMR titration studies have been carried out both on the wild-type enzyme and on a mutant isomerase in which the single remaining histidine (that at the active site) has been isotopically enriched in the imidazole ring. 15N NMR has proved especially useful in the unambiguous demonstration that the imidazole ring of histidine-95 is uncharged over the entire pH range of isomerase activity, between pH 5 and pH 9.9. The results require that the first pKa of histidine-95 is below 4.5. This abnormally low pKa rules out the traditional view that the positively charged imidazolium cation of histidine-95 donates a proton to the developing charge on the substrate's carbonyl oxygen. 15N NMR experiments on the enzyme in the presence of the reaction intermediate analogue phosphoglycolohydroxamate show the presence of a strong hydrogen bond between N epsilon 2 of histidine-95 and the bound inhibitor. These findings indicate that, in the catalyzed reaction, proton abstraction from C-1 of dihydroxyacetone phosphate first yields an enediolate intermediate that is strongly hydrogen bonded to the neutral imidazole side chain of histidine-95. The imidazole proton involved in this hydrogen bond then protonates the enediolate, with the transient formation of the enediol-imidazolate ion pair. Abstraction of the hydroxyl proton on O-1 now produces the other enediolate intermediate, which collapses to give the product glyceraldehyde 3-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The aldolase catalytic cycle consists of a number of proton transfers that interconvert covalent enzyme intermediates. Glu-187 is a conserved amino acid that is located in the mammalian fructose-1,6-bisphosphate aldolase active site. Its central location, within hydrogen bonding distance of three other conserved active site residues: Lys-146, Glu-189, and Schiff base-forming Lys-229, makes it an ideal candidate for mediating proton transfers. Point mutations, Glu-187--> Gln, Ala, which would inhibit proton transfers significantly, compromise activity. Trapping of enzymatic intermediates in Glu-187 mutants defines a proton transfer role for Glu-187 in substrate cleavage and Schiff base formation. Structural data show that loss of Glu-187 negative charge results in hydrogen bond formation between Lys-146 and Lys-229 consistent with a basic pK(a) for Lys-229 in native enzyme and supporting nucleophilic activation of Lys-229 by Glu-187 during Schiff base formation. The crystal structures also substantiate Glu-187 and Glu-189 as present in ionized form in native enzyme, compatible with their role of catalyzing proton exchange with solvent as indicated from solvent isotope effects. The proton exchange mechanism ensures Glu-187 basicity throughout the catalytic cycle requisite for mediating proton transfer and electrostatic stabilization of ketamine intermediates. Glutamate general base catalysis is a recurrent evolutionary feature of Schiff base0forming aldolases.  相似文献   

14.
Martí-Arbona R  Raushel FM 《Biochemistry》2006,45(48):14256-14262
N-Formimino-l-glutamate iminohydrolase (HutF) from Pseudomonas aeruginosa catalyzes the deimination of N-formimino-l-glutamate in the histidine degradation pathway. An amino acid sequence alignment between HutF and members of the amidohydrolase superfamily containing mononuclear metal centers indicated that residues Glu-235, His-269, and Asp-320 are involved in substrate binding and activation of the nucleophilic water molecule. The purified enzyme contained up to one equivalent of zinc. The metal was removed by dialysis against the metal chelator dipicolinate with the complete loss of catalytic activity. Enzymatic activity was restored by incubation of the apoprotein with Zn2+, Cd2+, Ni2+, or Cu2+. The mutation of Glu-235, His-269, or Asp-320 resulted in the diminution of catalytic activity by two to six orders of magnitude. Bell-shaped profiles were observed for kcat and kcat/Km as a function of pH. The pKa of the group that must be unprotonated for catalytic activity was consistent with the ionization of His-269. This residue is proposed to function as a general base in the abstraction of a proton from the metal-bound water molecule. In the proposed catalytic mechanism, the reaction is initiated by the abstraction of a proton from the metal-bound water molecule by the side chain imidazole of His-269 to generate a tetrahedral intermediate of the substrate. The collapse of the tetrahedral intermediate commences with the abstraction of a second proton via the side chain carboxylate of Asp-320. The C-N bond of the substrate is subsequently cleaved with proton transfer from His-269 to form ammonia and the N-formyl product. The postulated role of the invariant Glu-235 is to ion pair with the positively charged formimino group of the substrate.  相似文献   

15.
One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pKa of PRG; approximately 9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm(-1). This broad band is made up of two parts. The band above 1780 cm(-1), which is insensitive to C15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm(-1), on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm(-1) band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.  相似文献   

16.
Beta-Lactamases are responsible for bacterial resistance to beta-lactams and are thus of major clinical importance. However, the identity of the general base involved in their mechanism of action is still unclear. Two candidate residues, Glu166 and Lys73, have been proposed to fulfill this role. Previous studies support the proposal that Glu166 acts during the deacylation, but there is no consensus on the possible role of this residue in the acylation step. Recent experimental data and theoretical considerations indicate that Lys73 is protonated in the free beta-lactamases, showing that this residue is unlikely to act as a proton abstractor. On the other hand, it has been proposed that the pKa of Lys73 would be dramatically reduced upon substrate binding and would thus be able to act as a base. To check this hypothesis, we performed continuum electrostatic calculations for five wild-type and three beta-lactamase mutants to estimate the pKa of Lys73 in the presence of substrates, both in the Henri-Michaelis complex and in the tetrahedral intermediate. In all cases, the pKa of Lys73 was computed to be above 10, showing that it is unlikely to act as a proton abstractor, even when a beta-lactam substrate is bound in the enzyme active site. The pKa of Lys234 is also raised in the tetrahedral intermediate, thus confirming a probable role of this residue in the stabilization of the tetrahedral intermediate. The influence of the beta-lactam carboxylate on the pKa values of the active-site lysines is also discussed.  相似文献   

17.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

18.
Dimeric lactaldehyde and lactaldehyde-2-d in anhydrous or aqueous pyridine isomerize to hydroxyacetone. The isomerization is catalyzed by protic species that includes self-catalysis by the starting material and product, and catalysis by water and other Brönsted acids. The deuterium isotope effect which has values between 4 and 7, the isotopic exchange data, and the proton nmr assignment of the open dimer are consonant with the enediol mechanism with a rate-determining step involving the enolization of the open dimer.  相似文献   

19.
The product distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen (49% of the enzymatic products), [1(R)-(2)H]-DHAP from isomerization with incorporation of deuterium from D(2)O into C-1 of DHAP (31% of the enzymatic products), and [2(R)-(2)H]-GAP from incorporation of deuterium from D(2)O into C-2 of GAP (21% of the enzymatic products). The similar yields of [1(R)-(2)H]-DHAP and [2(R)-(2)H]-GAP from partitioning of the enzyme-bound enediol(ate) intermediate between hydron transfer to C-1 and C-2 is consistent with earlier results, which showed that there are similar barriers for conversion of this intermediate to the alpha-hydroxy ketone and aldehyde products (Knowles, J. R., and Albery, W. J. (1977) Acc. Chem. Res. 10, 105-111). However, the observation that the TIM-catalyzed isomerization of GAP in D(2)O proceeds with 49% intramolecular transfer of the (1)H label from substrate to product DHAP stands in sharp contrast with the 相似文献   

20.
Acyl-CoA dehydrogenases constitute a family of flavoproteins that catalyze the alpha,beta-dehydrogenation of fatty acid acyl-CoA conjugates. While they differ widely in their specificity, they share the same basic chemical mechanism of alpha,beta-dehydrogenation. Medium chain acyl-CoA dehydrogenase is probably the best-studied member of the class and serves as a model for the study of catalytic mechanisms. Based on medium chain acyl-CoA dehydrogenase we discuss the main factors that bring about catalysis, promote specificity and determine the selective transfer of electrons to electron transferring flavoprotein. The mechanism of alpha,beta-dehydrogenation is viewed as a process in which the substrate alphaC-H and betaC-H bonds are ruptured concertedly, the first hydrogen being removed by the active center base Glu376-COO- as an H+, the second being transferred as a hydride to the flavin N(5) position. Hereby the pKa of the substrate alphaC-H is lowered from > 20 to approximately 8 by the effect of specific hydrogen bonds. Concomitantly, the pKa of Glu376-COO- is also raised to 8-9 due to the decrease in polarity brought about by substrate binding. The kinetic sequence of medium chain acyl-CoA dehydrogenase is rather complex and involves several intermediates. A prominent one is the molecular complex of reduced enzyme with the enoyl-CoA product that is characterized by an intense charge transfer absorption and serves as the point of transfer of electrons to the electron transferring flavoprotein. These views are also discussed in the context of the accompanying paper on the three-dimensional properties of acyl-CoA dehydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号