首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic diversity among 35 rice accessions, which included 19 landraces, 9 cultivars and 7 wild relatives, was investigated by using microsatellite (SSR) markers distributed across the rice genome. The mean number of alleles per locus was 4.86, showing 95.2% polymorphism and an average polymorphism information content of 0.707. Cluster analysis based on microsatellite allelic diversity clearly demarcated the landraces, cultivars and wild relatives into different groups. The allelic richness computed for the clusters indicated that genetic diversity was the highest among wild relatives (0.436), followed by landraces (0.356), and the lowest for cultivars. Allelic variability among the SSR markers was high enough to categorize cultivars, landraces and wild relatives of the rice germplasm, and to catalogue the genetic variability observed for future use. The results also suggested the necessity to introgress genes from landraces and wild relatives into cultivars, for cultivar improvement.  相似文献   

2.
Genetic diversity among 42 sorghum accessions representing landraces (19), advanced breeding lines (16), local cultivars (2) and release varieties (5) with 30 simple sequence repeat (SSR) markers revealed 7.6 mean number of alleles per locus showing 93.3% polymorphism and an average polymorphism information content of 0.78 which range from 0.22 (Xtxp12) and 0.91(Xtxp321). The average heterozygosity and effective number of alleles per locus were 0.8 and 6.65 respectively. Cluster analysis based on microsatellite allelic diversity clearly demarcated the accessions into ten clusters. A total of 24 unique alleles were obtained from seven SSR loci in 23 accessions in a size range of 110–380 bp; these unique alleles may serve as diagnostic tools for particular region of the genome of respective genotypes. Selected SSR markers from different linkage groups provided an accurate way of determining genetic diversity at the molecular level.  相似文献   

3.
Access to genetic diversity is essential for any progress in adapting linseed (Linum usitatissimum subsp. usitatissimum L.) cultivation to changing environmental conditions or to the changing market needs. An attempt has been made in the present study to assess genetic diversity in 96 genotypes of linseed including varieties, landraces and exotic material. A total of 38 SSR primers amplified 153 alleles with 4.0 alleles per marker locus. The number of alleles ranged from 2 to 15 and the observed polymorphism ranged from 50 to 100%. Average genetic dissimilarity ranged from 2 to 50%. In order to analyze the efficiency for unambiguous identification of linseed germplasm, various statistical measures, viz., number of genotyping patterns, polymorphism information content, resolving power, discrimination power, probability of identity and probability of random identity, identified a set comprising of primers LU7, LU27, LU25, LU20 and LU31 (or LU637) for DNA fingerprinting of linseed germplasm. UPGMA cluster analysis showed that all genotypes could be grouped into four main clusters. Cluster 2 was the largest consisting of mainly landraces, whereas, Cluster 4 was the smallest. Cluster 1 consisted of mainly the released cultivars. Cluster 3 and Cluster 4 were smaller clusters and consisted of exotic genotypes. Principal co-ordinate analysis further substantiated the UPGMA clustering patterns of the observed genetic relationship. To explain 70–80% variability, 17–23 PCOs were needed, whereas 70 components were needed to explain the whole variability in the linseed material under study. Analysis of molecular variance indicated that most of the genetic variation is owing to the individuals within single population, whereas grouping of linseed material into varieties, landraces and exotics accounted for nearly 10% of the total genetic variation. The utility of SSR markers in diversity assessment and cultivar identification is discussed.  相似文献   

4.
Seventy-seven olive accessions corresponding to 25 cultivars from the Extremadura region of Spain were studied using four microsatellite or SSR markers in order to fingerprint them, and evaluate genetic similarity and relationships between local and introduced olive cultivars. The number of alleles per locus ranged from 4 to 8, with a mean of 6.25 alleles per primer pair (a total of 25 alleles). The observed heterozygosity ranged from 0.58 to 0.95, while the expected heterozygosity varied between 0.68 and 0.83. The polymorphism information content values ranged from 0.63 to 0.79. The mean polymorphism information content value of 0.70 for the SSR loci provided sufficient discriminating ability to evaluate the genetic diversity among the cultivars. The SSR data allowed unequivocal identification of all the cultivars; a combination of three SSR markers was sufficient to discriminate all 25 olive cultivars. A dendrogram was prepared, using the unweighted pair-group method with arithmetic mean clustering algorithm; it depicted the pattern of relationships between the cultivars. Most of the local cultivars grouped according to their geographic origin. No clear clustering trends were observed when the morphological traits of fruit endocarps or fruit use of cultivars were employed as analysis criteria. We conclude that there is a high level of variability among local olive cultivars from the Extremadura region at both the morphological and molecular levels; these data should be useful for identifying and distinguishing local germplasm.  相似文献   

5.
Rose (Rosa × hybrid L.) is one of the most important commercial ornamental crops cultivated worldwide for its beauty, fragrance and nutraceutical values. Characterization of rose germplasm provides precise information about the extent of diversity present among the cultivars. It also helps in cultivar identification, intellectual property right protection, variety improvement and genetic diversity conservation. In the present study, 109 Indian bred rose cultivars were characterized using 59 morphological and 48 SSR markers. Out of 48 SSRs used, 31 markers exhibited polymorphism and 96 alleles were identified with an average of 3.9 alleles per locus. Nei’s expected heterozygosity value of each locus ranged from 0.08 (with SSR ABRII/RPU32) to 0.78 (SSR Rh58). The similarity coefficient values ranged from 0.42 to 0.90 which indicated presence of moderated diversity among Indian cultivars. The neighbor-joining tree based on morphological data grouped the cultivars into two major clusters and several minor clusters based on their morphological resemblance. However, UPGMA dendrogram constructed using matching coefficient values grouped the cultivars into eight different clusters. Interpopulation analysis revealed higher genetic similarities between Hybrid Tea and Floribunda cultivars. An analysis for presence of population sub-structure grouped the Indian cultivars into eight different genetic groups. Analysis of molecular variance revealed apportioning of 97.59% of the variation to within subgroup diversity and 3.07% to between the cultivar groups. We have demonstrated here successful utilization of robust SSR to distinguish cultivars and assess genetic diversity among Indian bred rose cultivars. The information provided here is useful for cultivar identification and protection, cultivar improvement and genetic diversity conservation.  相似文献   

6.
Landraces of maize represent a valuable genetic resource for breeding and genetic studies. Since 1970, landraces have been collected from all over Turkey, but the genetic diversity represented in this collection is still largely unknown. In this study, a sample of 98 landraces sampled from 45 provinces of Turkey was assessed genotypically at 28 simple sequence repeat (SSR) loci and phenotypically for 19 morphological traits. The landraces varied significantly for all the latter traits. A total of 172 SSR alleles were detected, giving a mean of 6.21 alleles per locus. The genetic distance between pairs of landraces ranged from 0.18 to 0.63, with a mean of 0.35. Positive and negative correlation exists among different morphological and agronomic traits. Positive association among different traits showed that improvement of one character may simultaneously improve the other desired trait. Based on UPGMA dendrogram and Neighbor-Net (NNET) analyses from both morphological traits and SSR data, respectively, it is obvious that maize landraces from the same geographical region were often placed in different clusters, indicating that grouping based on genetic parameters was not closely related to the geographic origin. The wide diversity present in Turkish maize landraces could be used as genetic resource in designing maize breeding program for developing new cultivars adapted to different geographic and climatic conditions, and may also contribute to worldwide breeding programs.  相似文献   

7.
Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied.  相似文献   

8.
We analyzed the genetic diversity of 115 barley germplasms, including 112 landraces and three new barley cultivars grown in the Shanghai region, using a set of 11 SSR markers. Sixty-six alleles were observed at the 11 SSR loci, ranged from three to ten, with a mean of six alleles per locus. The polymorphism information content ranged from 0.568 to 0.853, with a mean of 0.732, indicating considerable genetic variation in barley in the Shanghai area. Clustering analysis indicated that these barley accessions could be divided into two categories (A and B). Ninety-seven six-rowed barley cultivars were classified in the A category; sixteen two-rowed and two six-rowed barley cultivars were classified in the B category. This demonstrated genetic differences between two-rowed and six-rowed barley varieties. In addition, we found that the three new barley cultivars are closely related.  相似文献   

9.
Red rod is an economically important disease of sugarcane caused by the fungus Colletotrichum falcatum. We used a simple sequence repeat (SSR)-based marker system to identify and analyze genetic relationships of red rot resistant and susceptible sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers were used for DNA fingerprinting and genetic diversity analysis of 20 sugarcane cultivars. These SSR markers were found to be highly robust; we identified 144 alleles, with 3-11 alleles per marker and a mean of 6.8. Three SSR markers were able to identify all 20 cultivars. DNAMAN(?)-generated homology tree was used to analyze genetic diversity among these cultivars; all cultivars shared 58% or more similarity. We correlated polymorphism information content and resolving power values with marker effectiveness in the process of sugarcane cultivar identification. We concluded that a small number of SSR-derived DNA markers will allow breeders to identify red rot resistant and susceptible cultivars.  相似文献   

10.
东北春大豆样本的代表性及其SSR位点的遗传多样性分析   总被引:9,自引:0,他引:9  
从3226份东北春大豆总体中选择283份春大豆种质,用质量性状和数量性状进行检测,对总体的代表性为80%.利用筛选出61对SSR核心引物对具代表性的东北春大豆样本进行分析,共检测到534个等位变异,平均每个位点的等位变异为8.75个,变幅为2~16个;遗传多样性指数变化范围在0.406~0.886,平均为0.704;东北春大豆样本在大多数位点上有优势等位变异,从而降低了其遗传多样性.其中35份种质具有特异等位变异,分布在29个位点上;各个位点上分化系数均较小,遗传多样性分化程度较低.东北春大豆中3个省种质的共有等位变异较多,以吉林省和辽宁省种质的遗传多样性表现较为一致,均高于黑龙江省种质的遗传多样性.地方品种的遗传多样性高于育成品种.东北春大豆种质资源的遗传多样性分布特点为有目的选择杂交亲本拓宽遗传基础以培育新品种提供了理论依据.  相似文献   

11.
In order to study genetic diversity of white birch (Betula platyphylla), 544 primer pairs were designed based on the genome-wide Solexa sequences. Among them, 215 primer pairs showed polymorphism between five genotypes and 111 primer pairs that presented clear visible bands in genotyping 41 white birch plants that were collected from 6 different geographical regions. A total of 717 alleles were obtained at 111 loci with a range of 2 to 12 alleles per locus. The results of statistic analysis showed that polymorphic frequency of the alleles ranged from 17% to 100% with a mean of 55.85%; polymorphism information content (PIC) of the loci was from 0.09 to 0.58 with a mean of 0.30; and gene diversity between the tested genotypes was from 0.01 to 0.66 with a mean of 0.36. The results also indicated that major allele frequency ranged from 0.39 to 1.00 with an mean of 0.75; expected heterozygosity from 0.22 to 0.54 with a mean of 0.46; observed heterozygosity from 0.02 to 0.95 with a mean of 0.26; Nei''s index from 0.21 to 0.54 with a mean of 0.46; and Shannon''s Information from 0.26 to 0.87 with a mean of 0.66. The 41 white birch genotypes at the 111 selected SSR loci showed low to moderate similarity (0.025-0.610), indicating complicated genetic diversity among the white birch collections. The UPGMA-based clustering analysis of the allelic constitution of 41 white birch genotypes at 111 SSR loci suggested that the six different geographical regions can be further separated into four clusters at a similarity coefficient of 0.22. Genotypes from Huanren and Liangshui provenances were grouped into Cluster I, genotypes from Xiaobeihu and Qingyuan provenances into Cluster II, genotypes from Finland provenance into Cluster III, and genotypes from Maoershan into Cluster IV. The information provided in this study could help for genetic improvement and germplasm conservation, evaluation and utilization in white birch tree breeding program.  相似文献   

12.
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70?C100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.  相似文献   

13.
Elshibli S  Korpelainen H 《Genetica》2008,134(2):251-260
Genetic diversity in date palm germplasm from Sudan representing 37 female and 23 male accessions was investigated using 16 loci of microsatellite (SSR) primers. Eight female accessions from Morocco were included as reference material. The tested SSR markers showed a high level of polymorphism. A total of 343 alleles were detected at the 16 loci. The number of alleles per marker ranged from 14 to 44 with an average of 21.4 per locus. A high level of expected heterozygosity was observed among Sudan cultivars (0.841), Morocco cultivars (0.820) and male accessions (0.799). The results indicate that the genetic groups of the Sudan cultivars and/or males do not follow a clear geographic pattern. However, the morocco group showed significant differentiation in relation to the Sudan groups, as measured by F (ST) values and genetic distances. The effect of the methods of pollination and cultivar selection on the genetic structure was clearly detected by the weak clustering association that was observed for the majority of accessions originating from Sudan and Morocco as well. This suggests the need for further investigation on the genetic diversity of Sudanese date palm germplasm. A deeper insight will be revealed by a detailed analysis of populations originating from different geographic locations.  相似文献   

14.
Safflower (Carthamus tinctorious L.) is valued as a source of high quality vegetable oil. 20 ISSR primers were used to assess the genetic diversity of 18 accessions of safflower collected from different geographical regions of Iran. The ISSR primers combinations revealed 57.6 % polymorphism, among 338 genetic loci amplified from the accessions. The sum of effective number of alleles and observed number of alleles were 29.76 and 36.77, respectively. To understand genetic relationships among these cultivars, Jacquards’ similarity coefficient and UPGMA clustering algorithm were applied to the ISSR marker data set. ISSR markers grouped accessions into two main clusters and four sub clusters. Also, the principal coordinate analysis (PCoA) supported the cluster analysis results. The results showed these genotypes have high genetic diversity, and can be used for alternative safflower breeding program.  相似文献   

15.
Information on genetic diversity and population structure of a tetraploid alfalfa collection might be valuable in effective use of the genetic resources. A set of 336 worldwide genotypes of tetraploid alfalfa (Medicago sativa subsp. sativa L.) was genotyped using 85 genome-wide distributed SSR markers to reveal the genetic diversity and population structure in the alfalfa. Genetic diversity analysis identified a total of 1056 alleles across 85 marker loci. The average expected heterozygosity and polymorphism information content values were 0.677 and 0.638, respectively, showing high levels of genetic diversity in the cultivated tetraploid alfalfa germplasm. Comparison of genetic characteristics across chromosomes indicated regions of chromosomes 2 and 3 had the highest genetic diversity. A higher genetic diversity was detected in alfalfa landraces than that of wild materials and cultivars. Two populations were identified by the model-based population structure, principal coordinate and neighbor-joining analyses, corresponding to China and other parts of the world. However, lack of strictly correlation between clustering and geographic origins suggested extensive germplasm exchanges of alfalfa germplasm across diverse geographic regions. The quantitative analysis of the genetic diversity and population structure in this study could be useful for genetic and genomic analysis and utilization of the genetic variation in alfalfa breeding.  相似文献   

16.
微卫星标记分析水稻地方品种30年的遗传变异   总被引:2,自引:0,他引:2  
Yan HM  Dong C  Zhang EL  Tang CF  A XX  Yang WY  Yang YY  Zhang FF  Xu FR 《遗传》2012,34(1):87-94
为揭示水稻(Oryza sativa)地方品种30年的遗传变异状况,文章通过60个SSR标记,对元阳哈尼梯田农户在20世纪70年代种植的6个(简称"过去的品种")和近10年间种植的对应6个(简称"当前的品种")代表性水稻地方品种进行检测。结果表明,共检测到159个等位基因(Na),等位基因数1~4不等,当前的品种较过去的品种减少7个等位基因。平均每个标记检测到的等位基因数(Na)、有效等位基因数(Ne)、基因型多样性(H′)和位点多态信息含量(PIC)4个指标均为过去的品种高于当前的品种,分别是(Na)为2.567>2.450,(Ne)为2.052>1.968,(H′)为0.768>0.722,(PIC)为0.469>0.439。基于60个SSR标记,过去6个品种间的遗传相似性系数(GS)平均值为0.437,变幅为0.117~0.667,而当前6个品种间平均值为0.473,变幅为0.200~0.700。总的说来,水稻地方品种经过30年自然和人工选择,遗传多样性降低,不同品种存在等位基因大小的差异程度不同。  相似文献   

17.
Asparagus bean, one of the three subspecies of Vigna unguiculata, has a long cultivation history in China. The genetic diversity was analyzed based on the 66 landraces and cultivars cultivated in China by using ISSR molecular markers, with which 192 amplification loci were obtained 32.3% of them being polymorphic. The genetic differentiation analysis revealed a very high genetic diversity in the Chinese landraces, which confirmed that China is the secondary origin centre of the asparagus bean. The commercial cultivars bred in China were genetically highly homogenous, suggesting that the breeding process has resulted in disappearance of some of the genetic variation. A cluster analysis at 0.17 of Nei genetic distance divided the 66 landraces and cultivars into 9 groups. Their clustering pattern basically matches the phylogeny of those cultivars, and also corresponds to their geographical origin and morphological traits.  相似文献   

18.
Maize (Zea mays L.) harbours significant genetic diversity not only in its centre of origin (Mexico) but also in several countries worldwide, including India, in the form of landraces. In this study, DNA fingerprinting of 48 landrace accessions from diverse regions of India was undertaken using 42 fluorescent dye-labeled Simple Sequence Repeat (SSR) markers, followed by allele resolution using DNA sequencer and analysis of molecular diversity within and among these landraces. The study revealed a large number of alleles (550), with high mean number of alleles per locus (13.1), and Polymorphism Information Content (PIC) of 0.60, reflecting the level of diversity in the landrace accessions. Besides identification of 174 unique alleles in 44 accessions, six highly frequent SSR alleles were detected at six loci (phi014, phi090, phi112, umc1367, phi062 and umc1266) with individual frequencies greater than 0.75, indicating that chromosomal regions harboring these SSR alleles are not selectively neutral. F statistics revealed very high genetic differentiation, population subdivision and varying levels of inbreeding in the landraces. Analysis of Molecular Variance showed that 63 % of the total variation in the accessions could be attributed to within-population diversity, and 37 % represented between population diversity. Cluster analysis of SSR data using Nei’s genetic distance and UPGMA revealed considerable genetic diversity in these populations, although no clear separation of accessions was observed based on their geographic origin.  相似文献   

19.
Genetic polymorphisms of ten microsatellite DNA loci were examined among 238 accessions of landraces and cultivars that represent a significant portion of the distribution range for both indica and japonica groups of cultivated rice. In all, 93 alleles were identified with these ten markers. The number of alleles varied from a low of 3 or 4 at each of four loci, to an intermediate value of 9–14 at five loci, and to an extra-ordinarily high 25 at one locus. The numbers of alleles per locus are much larger than those detected using other types of markers. The number of alleles detected at a locus is significantly correlated with the number of simple sequence repeats in the targeted microsatellite DNA. Indica rice has about 14% more alleles than japonica rice, and such allele number differences are more pronounced in landraces than in cultivars. The indica-japonica differentiation component accounted for about 10% of the diversity in the total sample, and twice as much differentiation was detected in cultivars as in landraces. About two-thirds as many alleles were observed in cultivars as in landraces; another two-thirds of the alleles in the cultivar group were found in modern elite cultivars or parents of hybrid rice. The majority of the simple sequence repeat (SSR) alleles that were present in high or intermediate frequencies in landraces ultimately survived into modern elite cultivars and hybrids. The greater resolving power and the efficient production of massive amounts of SSR data may be particularly useful for germplasm assessment and evolutionary studies of crop plants.  相似文献   

20.
A set of 94 peach cultivars including Spanish native peach and foreign commercial cultivars were analyzed using 15 SSR markers, selected for their high level of polymorphism. The number of alleles obtained varied from two to 11 with an average of 6.73 giving 185 different genotypes. All the cultivars showed a unique genetic profile, each one using different genotypic combination of all loci. BPPCT001 was the most informative locus showing also the highest discrimination power. Only six loci allowed the unambiguous separation of all the Spanish native cultivars studied, and the genotypic combination of only eight loci permitted the total differentiation of the 94 peach cultivars analyzed. The six selected loci (BPPCT001, BPPCT006, BPPCT008, PS9f8, UDP98-022, and UDP98-412) seem to be very useful for future Spanish peach identification works, and they will help to establish a molecular data base for native peach cultivars. UPGMA analysis was performed from the genetic distance matrix, and allowed the arrangement of all genotypes according to their genetic diversity. The genetic diversity among cultivars, observed in this work, led to their separation according to their regional origin, their morphological characteristics, and especially according to their fruit traits. Analysis of molecular variance was performed for seven populations from different regions of Spain and USA to examine the distribution of genetic variation of the studied accessions, showing that the major variation occurred within populations in each geographic site. The results reveal the existence of two diversity regions in Spain for peach germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号