首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examines the effect of calcium influx induced by the calcium ionophore (CI) on the biosynthesis of resveratrol and the expression of stilbene synthase (STS) and calcium-dependent protein kinase (CDPK) genes in cell cultures of Vitis amurensis, which have different levels of resveratrol production. The present study utilized the control cell culture V2 of V. amurensis, which contains no more than 0.02?% dry weight (DW) of resveratrol, in addition to rolB transgenic cell cultures VB1 and VB2, which have increased resveratrol contents (0.1–0.8?% DW). Treatment with the CI at a 1?μM concentration significantly increased STS gene expression (6 of 10 analyzed STS genes) and resveratrol production in the control V2 cell culture by fourfold; however, use of the CI at 10?μM significantly decreased resveratrol production by 2–4 fold in all cell cultures tested. In the control V2 grape cell culture, treatment with the CI increased expression of all of the CDPK genes except VaCDPK1a and VaCDPK3a. In the rolB transgenic VB2 grape cell culture treated with the CI, we detected alterations in expression of several CDPK genes, but these changes in gene expression were not significant. Our results indicated that treatment with 1?μM of the CI increased resveratrol content and production in control grape cells by selectively increasing the expression of STS genes. Conversely, the CI treatment did not significantly increase resveratrol content and production, or the expression of CDPK or STS genes in the rolB transgenic cells. Likely, untreated VB2 cells have increased concentrations of cytoplasmic calcium, and therefore, treatment with the CI did not significantly change CDPK expression. These results suggest that the rolB gene has an important role in the regulation of calcium-dependent transduction pathways in transformed cells.  相似文献   

2.
3.
The biosynthesis of resveratrol after the application of a precursor for biosynthesis, i.e., phenylalanine (Phe), has been studied. The application of Phe has been shown to increase significantly the expression of the phenylalanine-ammonia-lyase (PAL) and stilbene synthase (STS) genes and enhance the production of resveratrol by 8.5 times. Data on resveratrol production after the addition of Phe and coumaric acid (CA) were compared with known analogs.  相似文献   

4.
DNA methylation is known to be involved in the regulation of plant development and defense mechanisms. However, there is a general lack of data on the role of methylation in plant secondary metabolism. We have investigated the effect of a cytidine analog, 5-azacytidine (azaC), which is known to block DNA methylation, on resveratrol biosynthesis and stilbene synthase (STS) gene expression in Vitis amurensis cultured cells. Resveratrol is a naturally occurring polyphenol that has been reported to exhibit a wide range of important biological and pharmacological properties. We previously obtained a control cell line of V. amurensis (VV) as well as a rolB-transgenic cell line of V. amurensis (VB2) that has a higher level of resveratrol accumulation. In our experimental setup, the azaC-treated VV and VB2 calli produced 0.092% and 0.455% dry weight (DW) resveratrol, respectively. We found that treatment with 200 μM of azaC resulted in 1.9- and 2.0-fold increases in resveratrol production in VV and VB2 calli, respectively. A quantitative real-time PCR assay for STS gene expression in the azaC-treated VV and VB2 cells revealed that there were statistically increased expression levels of VaSTS10 in VV calli and of VaSTS5, VaSTS6, and VaSTS10 in VB2 calli. These results demonstrate that azaC is able to increase resveratrol production in V. amurensis calli through a mechanism that involves the induction of STS gene expression.  相似文献   

5.
Resveratrol, a naturally occurring polyphenol, has been reported to exhibit a wide range of valuable biological and pharmacological properties. In the present investigation, we show that transformation of Vitis amurensis Rupr. with the oncogene rolC of Agrobacterium rhizogenes increased resveratrol production in the two transformed callus cultures 3.7 and 11.9 times. The rolC-transformed calli were capable of producing 0.099% and 0.144% dry weight of resveratrol. We characterized phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) gene expression in the two rolC transgenic callus cultures of V. amurensis. In the rolC transgenic culture with higher resveratrol content, expression of VaPAL3, VaSTS3, VaSTS4, VaSTS5, VaSTS6, VaSTS8, VaSTS9, and VaSTS10 was increased; while in the rolC culture with lower resveratrol content, expression of VaPAL3 and VaSTS9 was increased. We suggest that transformation of V. amurensis calli with the rolС gene induced resveratrol accumulation via selective enhancement of expression of individual PAL and STS genes involved in resveratrol biosynthesis. We compared the data on PAL and STS gene expression in rolC transgenic calli with the previously obtained results for rolB transgenic calli of V. amurensis. We propose that the transformation of V. amurensis with the rolC and rolB genes of A. rhizogenes increased resveratrol accumulation through different regulatory pathways.  相似文献   

6.
7.

Plant cell and tissue cultures are considered as a source of valuable secondary metabolites but usually produce insufficient level of the compounds, which is the limiting factor for their application in biotechnology. We obtained 18 callus cell cultures from different organs of wild grape Vitis amurensis Rupr. collected at different seasons and analyzed stilbene accumulation in combination with calli growth parameters. This analysis showed that temporal and tissue origin of the calli affected the rate of stilbene biosynthesis. Stem-derived calli accumulated higher stilbene levels and exhibited a higher expression of phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) genes than calli derived from the leaves and petioles. The highest content of stilbenes was detected in the calli initiated from grapevine stems collected in the autumn. In general, all “autumn” cell cultures contained more than 2 mg g??1 dry wt (up to 11 mg g??1 dry wt) and exhibited high PAL and STS genes expression in comparison with the calli initiated in the summer. The content of stilbenes in the “autumn” cell cultures were comparable to the highest stilbene contents detected in other plant sources described in the literature. Thus, selecting the most optimal explant source for cell culture establishment could be an effective approach towards developing plant cell cultures producing high stilbene levels.

  相似文献   

8.
DNA methylation is known to play an important role in various developmental processes and defense mechanisms in plants and other organisms. However, it is not known whether DNA methylation is implicated in the genetic regulation of plant secondary metabolism, including resveratrol biosynthesis. Resveratrol is a naturally occurring polyphenol that is present in grapes, peanuts, and other plant sources, and it exhibits a wide range of valuable biologically active properties. The transformation of the wild-growing grape Vitis amurensis with the oncogene rolB from Agrobacterium rhizogenes has been demonstrated to considerably increase resveratrol production. To investigate whether DNA methylation regulates resveratrol biosynthesis, we treated both rolB transgenic and empty vector control V. amurensis cell cultures with the DNA demethylation agent 5-azacytosine (azaC). The azaC treatment significantly increased stilbene synthase 10 gene (VaSTS10) expression and resveratrol content in the V. amurensis cell cultures. Using bisulfite sequencing, we examined the methylation status of VaSTS10 in cell cultures under normal conditions and after azaC treatment. Both the promoter and 3′-end of the protein coding region of the VaSTS10 gene were hypermethylated (54–67 %) in the control cell culture. The rolB transgenic cell culture had high levels of resveratrol and lower hypermethylation levels of the VaSTS10 gene (20–47 %). The azaC treatment resulted in reduction in the DNA methylation levels in the promoter and coding regions of the VaSTS10 gene in both cell cultures. These data suggest that the DNA methylation may be involved in the control of resveratrol biosynthesis via the regulation of STS genes expression.  相似文献   

9.
10.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

11.
12.
Resveratrol is a plant-derived phenol but the mechanism that regulates its biosynthesis remains unidentified. Stilbene synthase (STS) catalyzes resveratrol formation in vivo and we have proposed that inducers of resveratrol production affect STS expression through an unidentified epigenetic mechanism. To investigate the role of DNA methylation in resveratrol biosynthesis, we treated both rolB transgenic and empty vector control Vitis amurensis cell cultures with the DNA demethylation agent, 5-azacytidine. Treated cells had increased resveratrol production through activation of VaSTS10 expression. The lowest levels of cytosine methylation were at the 5′- and 3′-ends of the VaSTS1 protein-coding sequence. Cytosine methylation decreased mostly at the 5′- and 3′-ends of VaSTS10 after azaC treatment with an intriguing regularity in the number of cytosine nucleotides within the 5′- and 3′- ends of the protein-coding sequences. Thus, cytosine methylation is crucial for the regulation of the resveratrol biosynthetic pathway.  相似文献   

13.
Resveratrol are the most important bioactive compounds found in Vitis amurensis. In this study, a somatic embryo induction system for V. amurensis was established in air-lift bioreactors for the production of biomass and resveratrol. The somatic embryos biomass growth was low on solid medium (69.60 g L?1) compared to in liquid medium in bioreactor (329.45 g L?1). Bioreactor cultures were found to be superior compared with solid medium culture not only in terms of biomass but also resveratrol productivity. Various culture parameters, including culture method, inoculum density, carbon source, and organic compounds were optimized. An inoculum density of 20 g L?1 embryogenic calli was found suitable for the accumulation of biomass and resveratrol production, whereas 10 g L?1 embryogenic calli increased the amount of resveratrol per fresh weight in somatic embryos. For bioreactor culturing, sucrose was an optimum carbon source and 500 mg L–1 casein hydrolysate acid was conducive to the biomass and resveratrol production. This result indicates that an efficient protocol for the large-scale production of resveratrol can be achieved by bioreactor culturing of V. amurensis somatic embryos and can be used as a source of medicinal raw materials.  相似文献   

14.
The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4′-O-β-d-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104–240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.  相似文献   

15.
16.
DNA becomes methylated in vivo through the action of a specific group of enzymes known as methyltransferases or methylases. Plants are known to possess the methyltransferases (Met), chromo methyltransferases (CMT), and domainrearranged methyltransferases (DRM) methylase families, which affect cytosine methylation within different contexts. DNA methylation has been proposed to play a role in secondary plant metabolism, but there is a lack of valid data connecting these two processes. In this study, we treated control and transformed with rolB gene from Agrobacterium rhizogenes cell cultures of Vitis amurensis with the demethylation agent 5-azacytidine (azaC). The purpose of the current investigation was to study effects of induced DNA demethylation on methyltransferase gene expression in connection to resveratrol production, a naturally occurring polyphenol that has a wide range of intriguing biological properties. Using semi-quantitative and real-time PCR, we showed that rolB gene transformation of V. amurensis cells decreased Met and CMT expression, but significantly increased DRM expression. AzaC treatment of the control and the rolB-transgenic calli significantly increased expression of all methylases (excluding Met). Following 3 months of azaC treatment, we detected significantly elevated levels of rolB gene expression in the transgenic calli. In current paper, we discuss how methylase expression may influence resveratrol biosynthesis and rolB transgene expression. Effects of azaC application are discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号