首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of the NADP-dependent glutamate dehydrogenase of Neurospora with 1,2-cyclohexanedione results in a biphasic loss of enzyme activity. At the end of the rapid phase of the reaction (t1/2 = 1.5 min) the enzyme activity is diminished by approximately 60% with the simultaneous loss of 1 residue of arginine per subunit. After 60 min, the enzyme activity is completely lost with the modification of a total of 2 arginine residues per subunit. Reaction of bovine liver glutamate dehydrogenase with cyclohexanedione causes a rapid loss of approximately 45% of the enzyme activity and modification of about 1.5 residues of arginine per subunit. More prolonged treatment results in reaction of an additional 4 residues of arginine per subunit but is without further effect on the residual activity. The activity of the Neurospora enzyme is not protected by substrate, coenzyme, or a combination of both; however, the activity of the bovine enzyme is partially protected by high levels of NAD or NADP. Although the Km for alpha-ketoglutarate is unchanged by a limited modification of either enzyme with cyclohexanedione, the Km for coenzyme is increased about 2-fold for the Neurospora enzyme and about 1.5-fold for the bovine enzyme. The Ki of the Neurospora dehydrogenase for the competitive inhibitor 2'-monophosphoadenosine-5'-diphosphoribose is unchanged by the enzyme modification, but nicotinamide mononucleotide, a competitive inhibitor for the native Neurospora enzyme, does not inhibit the glutamate dehydrogenase with 1 modified arginine residue. This finding implies that the modified arginine is at or near the nicotinamide binding iste of the enzyme.  相似文献   

2.
A sequence is presented for the COOH-terminal 669 residues of the NAD-specific glutamate dehydrogenase of Neurospora crassa. Comparison of this sequence with those of the vertebrate glutamate dehydrogenases of chicken and bovine liver and with the NADP-specific enzyme of Neurospora shows some similarities in sequences around residues previously identified as important for the function of these enzymes. These are: (a) the reactive lysine residue of low pK in the NADP and the vertebrate enzymes; (b) the tyrosine residue of the NADP enzyme that is readily nitrated by tetranitromethane with inactivation, a residue protected by NADP or by NMN; and (c) the arginine residue of the NADP-enzyme that is reactive with 1,2-cyclohexanedione with inactivation. Despite these similarities, comparison of the sequence of the NAD-enzyme with those of the other glutamate dehydrogenases of known sequences revealed relatively little overall homology as determined by computer analysis.  相似文献   

3.
Reaction of phenylglyoxal with glutamate dehydrogenase (EC 1.4.1.4), but not with glutamate synthase (EC 2.6.1.53), from Bacillus megaterium resulted in complete loss of enzyme activity. NADPH alone or together with 2-oxoglutarate provided substantial protection from inactivation by phenylglyoxal. Some 2mol of [14C]Phenylglyoxal was incorporated/mol of subunit of glutamate dehydrogenase. Addition of 1mM-NADPH decreased incorporation by 0.7mol. The Ki for phenylglyoxal was 6.7mM and Ks for competition with NADPH was 0.5mM. Complete inactivation of glutamate dehydrogenase by butane-2,3-dione was estimated by extrapolation to result from the loss of 3 of the 19 arginine residues/subunit. NADPH, but not NADH, provided almost complete protection against inactivation. Butane-2,3-dione had only a slight inactivating effect on glutamate synthase. The data suggest that an essential arginine residue may be involved in the binding of NADPH to glutamate dehydrogenase. The enzymes were inactivated by pyridoxal 5'-phosphate and this inactivation increased 3--4-fold in the borate buffer. NADPH completely prevented inactivation by pyridoxal 5'-phosphate.  相似文献   

4.
Chemical modification of one arginine residue per subunit of tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) molecule results in a 85-95% loss of its activity (Nagradova and Asryants (1975) Biochim. Biophys. Acta 386, 365-368; Nagradova, N.K., Asryants, R.A., Benkevich, N.V. and Safronova, M.I. (1976) FEBS Lett. 69, 246-248). Transient kinetic experiments performed in the present work with modified rabbit muscle and Baker's yeast enzymes showed that the first-order rate constant of acyl-enzyme.NADH formation was diminished 30-fold with the rabbit muscle enzyme and 60-fold with the Baker's yeast enzyme. Modification of arginine residues was shown also to affect the second step of the catalytic reaction, the phosphorolysis of the acyl-enzyme (the second-order rate constant of phosphorolysis decreased 9-fold in the case of the rabbit muscle enzyme and 40-fold in the case of the Baker's yeast enzyme). The native and modified enzymes exhibited similar inhibitory constant values with respect to NADH, suggesting no contribution of arginine residues to the acyl-enzyme.NADH complex destabilization. By and large, the experimental data are consistent with the hypothetical scheme proposed on the basis of X-ray crystallography studies to describe a participation of Arg-231 in the catalytic mechanism of D-glyceraldehyde-3-phosphate dehydrogenase (Grau (1982) in the Pyridine Nucleotide Coenzymes, p. 135-187).  相似文献   

5.
The flavoenzyme pig kidney general acyl-CoA dehydrogenase (EC 1.3.99.3) is inactivated by cyclohexane-1,2-dione in borate buffer in a reaction that exhibits pseudo-first-order kinetics. Strong protection is afforded by the substrate octanoyl-CoA, as well as by heptadecyl-CoA, a potent competitive inhibitor of the dehydrogenase that does not reduce enzyme flavin. Enzyme exhibiting 10% residual activity in borate buffer contains about 1.3 modified arginine residues per flavin molecule. Very little reduction of the modified enzyme in borate buffer occurs at high concentrations of octanoyl-CoA, in marked contrast with the stoicheiometric reduction of the native enzyme. However, in phosphate buffer alone, the modified enzyme exhibits 55% residual activity and, although binding of substrate is still seriously impaired (apparent Kd=14 microM), excess substrate effects the formation of the characteristic reduced flavin X enoyl-CoA charge-transfer complex. These results suggest that the susceptible arginine residue, though not catalytically essential, is probably within the acyl-CoA-binding site of general acyl-CoA dehydrogenase.  相似文献   

6.
Wei B  Ni L  Hurley TD  Weiner H 《Biochemistry》2000,39(18):5295-5302
The low-activity Oriental variant of human mitochondrial aldehyde dehydrogenase possesses a lysine rather than a glutamate at residue 487 in the 500 amino acid homotetrameric enzyme. The glutamate at position 487 formed two salt bonds, one to an arginine at position 264 in the same subunit and the other to arginine 475 in a different subunit [Steinmetz, C. G., Xie, P.-G.,Weiner, H., and Hurley, T. D. (1997) Structure 5, 2487-2505]. Mutating arginine 264 to glutamine produced a recombinantly expressed enzyme with nativelike properties; in contrast, mutating arginine 475 to glutamine produced an enzyme that exhibited positive cooperativity in NAD binding. The K(M) for NAD increased 23-fold with a Hill coefficient of 1.8. The binding of both NAD and NADH was affected by the mutation at position 475. Restoring the salt bonds between residues 487 and either or both 264 and 475 did not restore nativelike properties to the Oriental variant. Further, the R475Q mutant was thermally less stable than the native enzyme, Oriental variant, or other mutants. The presence of NAD restored nativelike stability to the mutant. It is concluded that movement of arginine 475 disrupted salt bonds between it and residues other than the one at 487, which caused the apo-R475Q mutant to have properties typical of an enzyme that exhibits positive cooperativity in substrate binding. Breaking the salt bond between glutamate 487 in the Oriental variant and the two arginine residues cannot be the only reason that this enzyme has altered catalytic properties.  相似文献   

7.
The enzyme, 10-formyltetrahydrofolate dehydrogenase (FDH), converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate in an NADP(+)-dependent dehydrogenase reaction or an NADP(+)-independent hydrolase reaction. The hydrolase reaction occurs in a 310-amino acid long amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. The amino-terminal domain of FDH shares some sequence identity with several other enzymes utilizing 10-formyl-THF as a substrate. These enzymes have two strictly conserved residues, aspartate and histidine, in the putative catalytic center. We have shown recently that the conserved aspartate is involved in FDH catalysis. In the present work we studied the role of the conserved histidine, His(106), in FDH function. Site-directed mutagenesis experiments showed that replacement of the histidine with alanine, asparagine, aspartate, glutamate, glutamine, or arginine in N(t)-FDH resulted in expression of insoluble proteins. Replacement of the histidine with another positively charged residue, lysine, produced a soluble mutant with no hydrolase activity. The insoluble mutants refolded from inclusion bodies adopted a conformation inherent to the wild-type N(t)-FDH, but they did not exhibit any hydrolase activity. Substitution of alanine for three non-conserved histidines located close to the conserved one did not reveal any significant changes in the hydrolase activity of N(t)-FDH. Expressed full-length FDH with the substitution of lysine for the His(106) completely lost both the hydrolase and dehydrogenase activities. Thus, our study showed that His(106), besides being an important structural residue, is also directly involved in both the hydrolase and dehydrogenase mechanisms of FDH. Modeling of the putative hydrolase catalytic center/folate-binding site suggested that the catalytic residues, aspartate and histidine, are unlikely to be adjacent to the catalytic cysteine in the aldehyde dehydrogenase catalytic center. We hypothesize that 10-formyl-THF dehydrogenase reaction is not an independent reaction but is a combination of hydrolase and aldehyde dehydrogenase reactions.  相似文献   

8.
The glutamate dehydrogenase from a single human liver has been studied. The subunit size was found to be 55,200 +/- 1,500 by sedimentation equilibrium. The partial specific volume is 0.732 as calculated from the amino acid composition. The sequence was determined by isolation of peptides after cyanogen bromide (CNBr) cleavage; the fraction containing the largest peptides was hydrolyzed by trypsin after maleylation. Studies on these peptides accounted for 454 residues of the 505 residues that are presumably present in the protein. For the 51 residues that were not represented in isolated peptides, we have tentatively assumed that the sequence is the same as that of the bovine enzyme. Methionine and arginine residues in these peptides could be placed on the basis of the specificity of cleavage by CNBr or trypsin. In all, 349 residues were placed in sequence, and were aligned by homology with the corresponding peptides of the bovine and chicken enzymes. From the present information, there are 24 known differences in sequence between the human and bovine enzymes and 41 between the human and chicken enzymes. In addition, the human enzyme contains 4 additional residues at the NH2 terminus as compared to the bovine enzyme. In a peptide from the human enzyme, an additional residue, isoleucine 385, was detected by automated Edman degradation. Reinvestigation of the bovine sequence demonstrated that this residue is also present in the bovine enzyme (and presumably in the chicken enzyme also). Residue 384 of the bovine enzyme, previously reported as Glx has now been shown to be glutamine.  相似文献   

9.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

10.
Neurospora NADP-specific glutamate dehydrogenase that was treated with iodoacetate, iodoacetamide, or N-ethylmaleimide to block the thiol groups was cleaved with cyanogen bromide. Of the expected 10 peptides, based on a methionine content of 9 residues, 8 were obtained in pure form and 2 were handled as a mixture. The fragments ranged in size from 9 to 109 residues. In addition, there were isolated 6 peptides, produced by anomalous cleavage at the carboxyl groups of tryptophan residues, and two by hydrolysis of an aspartyl-proline bond. Preliminary separation of these peptides was accomplished by gel filtration followed by either ion-exchange chromatography of the larger peptides or by paper chromatography and paper electrophoresis of the smaller fragments. Ordering of the CNBr fragments in sequence was based upon sequences of tryptic and chymotryptic peptides obtained in another laboratory. The complete sequence of the protein is presented. The amino acid sequences of the bovine and chicken liver glutamate dehydrogenases previously determined show considerable homology with the NADP-specific enzyme of Neurospora in the NH2-terminal half of the molecule; this includes the region of the specifically reactive lysine residue and the portion of the sequence that has been implicated in coenzyme binding. Particularly striking is the fact that most of the residues conserved among the three homologous proteins would be expected to be important for conformational, rather than catalytic, effects. This implies that the conformation of the Neurospora enzyme must be similar in parts of its structure to the vertebrate enzymes but undoubtedly differs in some regards.  相似文献   

11.
Incubation of homogeneous preparations of L-threonine dehydrogenase from Escherichia coli with 2,3-butanedione, 2,3-pentanedione, phenylglyoxal, or 1,2-cyclohexanedione causes a time- and concentration-dependent loss of enzymatic activity; plots of log percent activity remaining versus time are linear to greater than 90% inactivation, indicative of pseudo-first order inactivation kinetics. The reaction order with respect to the concentration of modifying reagent is approximately 1.0 in each case suggesting that the loss of catalytic activity is due to one molecule of modifier reacting with each active unit of enzyme. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced nonspecific alteration of the dehydrogenase. Essentially the same Km but decreased Vmax values are obtained when partially inactivated enzyme is compared with native. NADH (25 mM) and NAD+ (70 mM) give full protection against inactivation whereas much higher concentrations (i.e. 150 mM) of L-threonine or L-threonine amide provide a maximum of 80-85% protection. Amino acid analyses coupled with quantitative sulfhydryl group determinations show that enzyme inactivated 95% by 2,3-butanedione loses 7.5 arginine residues (out of 16 total)/enzyme subunit with no significant change in other amino acid residues. In contrast, only 2.4 arginine residues/subunit are modified in the presence of 80 mM NAD+. Analysis of the course of modification and inactivation by the statistical method of Tsou (Tsou, C.-L. (1962) Sci. Sin. 11, 1535-1558) demonstrates that inactivation of threonine dehydrogenase correlates with the loss of 1 "essential" arginine residue/subunit which quite likely is located in the NAD+/NADH binding site.  相似文献   

12.
The MACiE database contains 223 distinct step-wise enzyme reaction mechanisms and holds representatives from each EC sub-subclass where there is a crystal structure and sufficient evidence in the literature to support a mechanism. Each catalytic step of every reaction sequence in MACiE is fully annotated so that it includes the function of the catalytic residues involved in the reaction and the mechanism by which substrates are transformed into products. Using MACiE as a knowledge base, we have seen that the top 10 most catalytic residues are histidine, aspartate, glutamate, lysine, cysteine, arginine, serine, threonine, tyrosine and tryptophan. Of these only seven (cysteine, histidine, aspartate, lysine, serine, threonine and tyrosine) dominate catalysis and provide essentially five functional roles that are essential. Stabilisation is the most common and essential role for all classes of enzyme, followed by general acid/base (proton acceptor and proton donor) functionality, with nucleophilic addition following closely behind (nucleophile and nucleofuge). We investigated the occurrence of these residues in MACiE and the Catalytic Site Atlas and found that, as expected, certain residue types are associated with each functional role, with some residue types able to perform diverse roles. In addition, it was seen that different EC classes of enzyme have a tendency to employ different residues for catalysis. Further, we show that whilst the differences between EC classes in catalytic residue composition are not immediately obvious from the general classes of Ingold mechanisms, there is some weak correlation between the mechanisms involved in a given EC class and the functions that the catalytic amino acid residues are performing. The analysis presented here provides a valuable insight into the functional roles of catalytic amino acid residues, which may have applications in many aspects of enzymology, from the design of novel enzymes to the prediction and validation of enzyme reaction mechanisms.  相似文献   

13.
Functional modification of an arginine residue on salicylate hydroxylase   总被引:1,自引:0,他引:1  
Salicylate hydroxylase from Pseudomonas putida (EC 1.14.13.1, salicylate, NADH:oxygen oxidoreductase) is an FAD-containing monooxygenase, which catalyzes decarboxylative hydroxylation of salicylate to produce catechol in the presence of NADH and O2. By chemical treatment of the enzyme with dicarbonyl reagents, such as glyoxal, the original oxygenase activity was converted to the salicylate-dependent NADH-dehydrogenase activity with free FAD as electron acceptor. One of twenty arginine residues of this enzyme is concerned with this alteration of activity, as shown by the result of its modification at pH 6.9. This result is further supported by the isolation of one arginine-modified enzyme by chromatographic methods on DEAE-Sephadex, A-50 columns. It exhibits the dehydrogenase activity predominantly. This modified enzyme is spectrophotometrically and electrophoretically characterized by a minute conformational change around the active site, and kinetically by a 7-fold increase in an apparent Km for NADH and a decrease of more than 5-fold in an apparent Km for FAD as electron acceptor, with an apparent Vmax of 22 s-1 for the dehydrogenase activity. Flow kinetics also showed a marked decrease in the rate for oxygenation of the reduced enzyme-salicylate complex from 21 s-1 (native enzyme) to 3.3 s-1 (modified enzyme). These facts suggest that one arginine residue of the enzyme is responsible for the NADH binding site, and chemical modification of one arginine residue of the enzyme induces some conformational change around the active site to alter the catalytic activity from oxygenation to dehydrogenation.  相似文献   

14.
M Fujioka  Y Takata 《Biochemistry》1981,20(3):468-472
The baker's yeast saccharopine dehydrogenase (EC 1.5.1.7) was inactivated by 2,3-butanedione following pseudo-first-order reaction kinetics. The pseudo-first-order rate constant for inactivation was linearly related to the butanedione concentration, and a value of 7.5 M-1 min-1 was obtained for the second-order rate constant at pH 8.0 and 25 degrees C. Amino acid analysis of the inactivated enzyme revealed that arginine was the only amino acid residue affected. Although as many as eight arginine residues were lost on prolonged incubation with butanedione, only one residue appears to be essential for activity. The modification resulted in the change in Vmax, but not in Km, values for substrates. The inactivation by butanedione was substantially protected by L-leucine, a competitive analogue of substrate lysine, in the presence of reduced nicotinamide adenine dinucleotide (NADH) and alpha-ketoglutarate. Since leucine binds only to the enzyme-NADH-alpha-ketoglutarate complex, the result suggests that an arginine residue located near the binding site for the amino acid substrate is modified. Titration with leucine showed that the reaction of butanedione also took place with the enzyme-NADH-alpha-ketoglutarate-leucine complex more slowly than with the free enzyme. The binding study indicated that the inactivated enzyme still retained the capacity to bind leucine, although the affinity appeared to be somewhat decreased. From these results it is concluded that an arginine residue essential for activity is involved in the catalytic reaction rather than in the binding of the coenzyme and substrates.  相似文献   

15.
16.
1. A base-nonspecific ribonuclease from Aspergillus saitoi [RNase Ms, EC 3.1.4.23; molecular weight, 12,500] was modified with phenylglyoxal (PG) and 1,2-cyclohexanedione (CHD) in order to determine whether a single arginine residue was involved in the active site of the enzyme. 2. RNase Ms was inactivated by both PG and CHD with concomitant loss of one arginine residue. A competitive inhibitor of RNase Ms, 2',(3')-AMP, protected the enzyme from inactivation by PG. These findings strongly suggest that one arginine residue is involved in the active site of RNase Ms. 3. Difference CD spectra were measured at pH 5.5 for the binding of 2'-AMP and adenosine to native RNase Ms and the CHD- and PG-modified enzyme derivatives to determine the association constants. The arginine modification brought about a marked decrease in the binding affinity of 2'-AMP for the enzyme, but only a slight decrease for adenosine, suggesting that the arginine residue had interacted with the phosphate groups of the substrate.  相似文献   

17.
Nitrogen regulation of glutamine synthetase in Neurospora crassa.   总被引:7,自引:0,他引:7  
A higher activity of glutamine synthetase (EC 6.3.1.2) was found in Neurospora crassa when NH4+ was limiting as nitrogen source than when glutamate was limiting. When glutamate, glutamine or NH4+ were in excess, a lower activity was found. Immunological titration and sucrose gradient sedimentation of the enzyme established that under all these conditions enzyme activity corresponded to enzyme concentration and that the octamer was the predominant oligomeric form. When N. crassa was shifted from nitrogen-limiting substrates to excess product as nitrogen source, the concentration of glutamine synthetase was adjusted with kinetics that closely followed dilution by growth. When grown on limiting amounts of glutamate, a lower oligomer was present in addition to the octameric form of the enzyme. When the culture was shifted to excess NH4+, glutamine accululated at a high rate; nevertheless, there was only a slow decrease in enzyme activity and no modification of the oligomeric pattern.  相似文献   

18.
The enzyme 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate in either a dehydrogenase or hydrolase reaction. The hydrolase reaction occurs in a 310-residue amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. N(t)-FDH shares some sequence identity with several 10-formyltetrahydrofolate-utilizing enzymes. All these enzymes have a strictly conserved aspartate, which is Asp(142) in the case of N(t)-FDH. Replacement of the aspartate with alanine, asparagine, glutamate, or glutamine in N(t)-FDH resulted in complete loss of hydrolase activity. All the mutants, however, were able to bind folate, although with lower affinity than wild-type N(t)-FDH. Six other aspartate residues located near the conserved Asp(142) were substituted with an alanine, and these substitutions did not result in any significant changes in the hydrolase activity. The expressed D142A mutant of the full-length enzyme completely lost both hydrolase and dehydrogenase activities. This study shows that Asp(142) is an essential residue in the enzyme mechanism for both the hydrolase and dehydrogenase reactions of FDH, suggesting that either the two catalytic centers of FDH are overlapped or the dehydrogenase reaction occurs within the hydrolase catalytic center.  相似文献   

19.
Neutral endopeptidase (EC 3.4.24.11, NEP) is a Zn-metallopeptidase involved in the degradation of biologically active peptides, notably the enkephalins and atrial natriuretic peptide. Recently, the structure of the active site of this enzyme has been probed by site-directed mutagenesis, and 4 amino acid residues have been identified, namely 2 histidines (His583 and His587), which act as zinc-binding ligands, a glutamate (Glu584) involved in catalysis, and an arginine residue (Arg102), suggested to participate in substrate binding. Site-directed mutagenesis has now been used to investigate the role of 4 other arginine residues (Arg408, Arg409, Arg659, and Arg747) that have been proposed as possible active site residues and to further analyze the role of Arg102. In each case, the arginine was replaced with a methionine, and both enzymatic activity and the IC50 values of several NEP inhibitors were measured for the mutated enzymes and compared to wild-type enzyme. The results suggest that 2 arginines, Arg102 and Arg747, could both be important for substrate and inhibitor binding. Arg747 seems to be positioned to interact with the carbonyl amide group of the P'1 residue and can be modified when the enzyme is treated with the arginine-specific reagents phenylglyoxal and butanedione. Arg102 could be positioned to interact with the free carboxyl group of a P'2 residue in some substrates and inhibitors and can be modified by phenylglyoxal but not by butanedione. The results could explain the dual dipeptidylcarboxypeptidase and endopeptidase nature of NEP.  相似文献   

20.
Mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) from porcine heart exhibits a time dependent loss in enzymatic activity in the presence of the reagent butanedione. The inhibition occurs concomitant with the modification of 2.4 residues of arginine per molecular weight of 70,000. The presence of the reduced coenzyme, NADH, protects the enzyme from inhibition by butanedione and from modification of arginine residues, suggesting that the residues modified are located near the coenzyme binding site and hence at or near the enzymatic active center of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号